[go: up one dir, main page]

login
A180250
a(n) = 5*a(n-1) + 10*a(n-2), with a(1)=0 and a(2)=1.
7
0, 1, 5, 35, 225, 1475, 9625, 62875, 410625, 2681875, 17515625, 114396875, 747140625, 4879671875, 31869765625, 208145546875, 1359425390625, 8878582421875, 57987166015625, 378721654296875, 2473479931640625, 16154616201171875, 105507880322265625
OFFSET
1,3
FORMULA
a(n) = ((5+sqrt(65))^(n-1) - (5-sqrt(65))^(n-1))/(2^(n-1)*sqrt(65)). - Rolf Pleisch, May 14 2011
G.f.: x^2/(1-5*x-10*x^2).
a(n) = (i*sqrt(10))^(n-1) * ChebyshevU(n-1, -i*sqrt(5/8)). - G. C. Greubel, Jul 21 2023
MATHEMATICA
Join[{a=0, b=1}, Table[c=5*b+10*a; a=b; b=c, {n, 100}]]
LinearRecurrence[{5, 10}, {0, 1}, 30] (* G. C. Greubel, Jan 16 2018 *)
PROG
(PARI) a(n)=([0, 1; 10, 5]^(n-1))[1, 2] \\ Charles R Greathouse IV, Oct 03 2016
(PARI) my(x='x+O('x^30)); concat([0], Vec(x^2/(1-5*x-10*x^2))) \\ G. C. Greubel, Jan 16 2018
(Magma) [n le 2 select n-1 else 5*Self(n-1) +10*Self(n-2): n in [1..30]]; // G. C. Greubel, Jan 16 2018
(SageMath)
A180250= BinaryRecurrenceSequence(5, 10, 0, 1)
[A180250(n-1) for n in range(1, 41)] # G. C. Greubel, Jul 21 2023
KEYWORD
nonn,easy
AUTHOR
STATUS
approved