[go: up one dir, main page]

login
Search: a090091 -id:a090091
     Sort: relevance | references | number | modified | created      Format: long | short | data
Duplicate of A090091.
+20
1
1, 2, 5, 15, 67, 504, 9310
OFFSET
1,2
COMMENTS
Previous name was: Marcus Du Sautoy's sequences of symmetries from Higman's "Polynomial on residue classes".
REFERENCES
Marcus Du Sautoy, Symmetry: A Journey into the Patterns of Nature,Harper (March 11, 2008),page 96
KEYWORD
dead
STATUS
approved
Number of groups of order 5^n.
+10
8
1, 1, 2, 5, 15, 77, 684, 34297
OFFSET
0,3
REFERENCES
G. Bagnera, La composizione dei Gruppi finiti il cui grado e la quinta potenza di un numero primo, Ann. Mat. Pura Appl. (3), 1 (1898), 137-228.
Hans Ulrich Besche, Bettina Eick and E. A. O'Brien, A Millennium Project: Constructing Small Groups, International Journal of Algebra and Computation, Vol. 12, No 5 (2002), 623-644.
W. Burnside, Theory of Groups of Finite Order, Dover, NY, 1955.
LINKS
M. F. Newman, E. A. O'Brien and M. R. Vaughan-Lee, Groups and nilpotent Lie rings whose order is the sixth power of a prime, J. Algebra, 278 (2004), 383-401.
E. A. O'Brien and M. R. Vaughan-Lee, The groups of order p^7 for odd prime p, J. Algebra 292, 243-258, 2005. [Eamonn O'Brien, Mar 06 2010]
FORMULA
For a prime p >= 5, the number of groups of order p^n begins 1, 1, 2, 5, 15, 61 + 2*p + 2*gcd (p - 1, 3) + gcd (p - 1, 4), 3*p^2 + 39*p + 344 + 24*gcd(p - 1, 3) + 11*gcd(p - 1, 4) + 2*gcd(p - 1, 5), ...
PROG
(GAP) A090130 := List([0..7], n -> NumberSmallGroups(5^n)); # Muniru A Asiru, Oct 15 2017
CROSSREFS
KEYWORD
nonn
AUTHOR
Eamonn O'Brien (obrien(AT)math.auckland.ac.nz), Jan 22 2004
EXTENSIONS
Corrected and extended by David Radcliffe, Feb 24 2010
Corrected and extended by Eamonn O'Brien, Mar 06 2010
STATUS
approved
Number of groups of order 7^n.
+10
7
1, 1, 2, 5, 15, 83, 860, 113147
OFFSET
0,3
REFERENCES
G. Bagnera, La composizione dei Gruppi finiti il cui grado e la quinta potenza di un numero primo, Ann. Mat. Pura Appl. (3), 1 (1898), 137-228.
Hans Ulrich Besche, Bettina Eick and E. A. O'Brien, A Millennium Project: Constructing Small Groups, International Journal of Algebra and Computation, Vol. 12, No 5 (2002), 623-644.
W. Burnside, Theory of Groups of Finite Order, Dover, NY, 1955.
M. F. Newman, E. A. O'Brien and M. R. Vaughan-Lee, Groups and nilpotent Lie rings whose order is the sixth power of a prime, J. Algebra, 278 (2004), 383-401.
E. A. O'Brien and M. R. Vaughan-Lee, The groups of order p^7 for odd prime p, J. Algebra 292, 243-258, 2005.
FORMULA
For a prime p >= 5, the number of groups of order p^n begins 1, 1, 2, 5, 15, 61 + 2*p + 2*gcd (p - 1, 3) + gcd (p - 1, 4), 3*p^2 + 39*p + 344 + 24*gcd(p - 1, 3) + 11*gcd(p - 1, 4) + 2*gcd(p - 1, 5), ...
CROSSREFS
KEYWORD
nonn
AUTHOR
Eamonn O'Brien (obrien(AT)math.auckland.ac.nz), Jan 22 2004
EXTENSIONS
Corrected and extended by David Radcliffe, Feb 24 2010
Updated reference for p^7 Eamonn O'Brien (obrien(AT)math.auckland.ac.nz), Mar 06 2010
STATUS
approved
Number of groups of order prime(n)^6.
+10
7
267, 504, 684, 860, 1192, 1476, 1944, 2264, 2876, 4068, 4540, 6012, 7064, 7664, 8852, 10908, 13136, 14012, 16520, 18292, 19296, 22244, 24296, 27648, 32472, 34964, 36284, 38912, 40356, 43128, 53780, 56992, 62064, 63824, 72828, 74740, 80532, 86504, 90572, 96948
OFFSET
1,1
COMMENTS
Isomorphism types of groups and nilpotent Lie rings with order prime(n)^6.
LINKS
M. F. Newman, E. A. O'Brien and M. R. Vaughan-Lee, Groups and nilpotent Lie rings whose order is the sixth power of a prime, J. Algebra, 278 (2004), 383-401.
FORMULA
For a prime p > 3, the number of groups of order p^6 is 3p^2 + 39p + 344 + 24 gcd(p - 1, 3) + 11 gcd(p - 1, 4) + 2 gcd(p - 1, 5).
MAPLE
a:= n-> `if`(n<3, [267, 504][n], (c-> 386 +(45 +3*c)*c+
24*igcd(c, 3) +11*igcd(c, 4) +2*igcd(c, 5))(ithprime(n)-1)):
seq(a(n), n=1..40); # Alois P. Heinz, Nov 17 2017
MATHEMATICA
Table[FiniteGroupCount[Prime[n]^6], {n, 40}] (* Michael De Vlieger, Apr 12 2016 *)
PROG
(Sage) def A232106(n) : p = nth_prime(n); return 267 if p==2 else 504 if p==3 else 3*p^2 + 39*p + 344 + 24*gcd(p - 1, 3) + 11*gcd(p - 1, 4) + 2*gcd(p - 1, 5)
(PARI) a(n) = if(n==1, 267, if (n==2, 504, my(p=prime(n)); 3*p^2 + 39*p + 344 + 24*gcd(p - 1, 3) + 11*gcd(p - 1, 4) + 2*gcd(p - 1, 5))); \\ Altug Alkan, Apr 12 2016
(GAP) A232106 := Concatenation([267, 504], List(Filtered([5..10^5], IsPrime), p -> 3 * p^2 + 39 * p + 344 + 24 * Gcd(p-1, 3) + 11 * Gcd(p-1, 4) + 2 * Gcd(p-1, 5))); # Muniru A Asiru, Nov 16 2017
KEYWORD
nonn
AUTHOR
Eric M. Schmidt, Nov 21 2013
STATUS
approved
Number of groups of order prime(n)^5.
+10
4
51, 67, 77, 83, 87, 97, 101, 107, 111, 125, 131, 145, 149, 155, 159, 173, 183, 193, 203, 207, 217, 227, 231, 245, 265, 269, 275, 279, 289, 293, 323, 327, 341, 347, 365, 371, 385, 395, 399, 413, 423, 433, 447, 457, 461, 467, 491, 515, 519, 529, 533, 543, 553
OFFSET
1,1
LINKS
G. Bagnera, La composizione dei Gruppi finiti il cui grado e la quinta potenza di un numero primo, Ann. Mat. Pura Appl. (3), 1 (1898), 137-228.
M. F. Newman, E. A. O'Brien and M. R. Vaughan-Lee, Groups and nilpotent Lie rings whose order is the sixth power of a prime, J. Algebra, 278 (2004), 383-401.
FORMULA
For a prime p > 3, the number of groups of order p^5 is 61 + 2p + 2 gcd(p - 1, 3) + gcd(p - 1, 4).
PROG
(Sage) def A232105(n) : p = nth_prime(n); return 51 if p==2 else 67 if p==3 else 61 + 2*p + 2*gcd(p - 1, 3) + gcd(p - 1, 4)
(GAP) A232105 := Concatenation([51, 67], List(Filtered([5..10^5], IsPrime), p -> 61 + 2 * p + 2 * Gcd(p-1, 3) + Gcd(p-1, 4))); # Muniru A Asiru, Nov 16 2017
KEYWORD
nonn
AUTHOR
Eric M. Schmidt, Nov 21 2013
STATUS
approved
Number of groups of order prime(n)^7.
+10
4
2328, 9310, 34297, 113147, 750735, 1600573, 5546909, 9380741, 23316851, 71271069, 98488755, 233043067, 384847485, 485930975, 751588475, 1356370173, 2299880351, 2710679045, 4306310927, 5734323819, 6578172579, 9721485395, 12413061671, 17537591045, 26866372821
OFFSET
1,1
LINKS
E. A. O'Brien and M. R. Vaughan-Lee, The groups of order p^7 for odd prime p, J. Algebra 292, 243-258, 2005.
FORMULA
For a prime p > 5, the number of groups of order p^7 is 3p^5 + 12p^4 + 44p^3 + 170p^2 + 707p + 2455 + (4p^2 + 44p + 291)gcd(p - 1, 3) + (p^2 + 19p + 135)gcd(p - 1, 4) + (3p + 31)gcd(p - 1, 5) + 4 gcd(p - 1, 7) + 5 gcd(p - 1, 8) + gcd(p - 1, 9).
MAPLE
a:= n-> `if`(n<4, [2328, 9310, 34297][n], (c-> 3391 +(1242+
(404 +(122 +(27 +3*c)*c)*c)*c)*c +(339 +(52 +4*c)*c)*igcd(c, 3)+
(155 +(21 +c)*c)*igcd(c, 4) +(34 +3*c)*igcd(c, 5) +4*igcd(c, 7)+
5*igcd(c, 8) +igcd(c, 9))(ithprime(n)-1)):
seq(a(n), n=1..25); # Alois P. Heinz, Nov 17 2017
PROG
(Sage) def A232107(n) : p = nth_prime(n); return 2328 if p==2 else 9310 if p==3 else 34297 if p==5 else 3*p^5 + 12*p^4 + 44*p^3 + 170*p^2 + 707*p + 2455 + (4*p^2 + 44*p + 291)*gcd(p - 1, 3) + (p^2 + 19*p + 135)*gcd(p - 1, 4) + (3*p + 31)*gcd(p - 1, 5) + 4*gcd(p - 1, 7) + 5*gcd(p - 1, 8) + gcd(p - 1, 9)
(GAP) A232107 := Concatenation([2328, 9310, 34297], List(Filtered([7..10^5], IsPrime), p -> 3 * p^5 + 12 * p^4 + 44 * p^3 + 170 * p^2 + 707 * p + 2455 + (4 * p^2 + 44 * p + 291) * Gcd(p-1, 3) + (p^2 + 19 * p + 135) * Gcd(p-1, 4) + (3 * p + 31) * Gcd(p-1, 5) + 4 * Gcd(p-1, 7) + 5 * Gcd(p-1, 8) + Gcd(p-1, 9))); # Muniru A Asiru, Nov 16 2017
KEYWORD
nonn
AUTHOR
Eric M. Schmidt, Nov 21 2013
STATUS
approved
a(n) is the smallest composite number coprime to n.
+10
3
4, 9, 4, 9, 4, 25, 4, 9, 4, 9, 4, 25, 4, 9, 4, 9, 4, 25, 4, 9, 4, 9, 4, 25, 4, 9, 4, 9, 4, 49, 4, 9, 4, 9, 4, 25, 4, 9, 4, 9, 4, 25, 4, 9, 4, 9, 4, 25, 4, 9, 4, 9, 4, 25, 4, 9, 4, 9, 4, 49, 4, 9, 4, 9, 4, 25, 4, 9, 4, 9, 4, 25, 4, 9, 4, 9, 4, 25, 4, 9, 4, 9, 4, 25, 4, 9, 4, 9, 4, 49, 4, 9, 4, 9, 4, 25, 4
OFFSET
1,1
COMMENTS
If n is the n-th primorial, then a(n) = prime(n+1)^2.
LINKS
FORMULA
a(n) = A053669(n)^2.
Asymptotic mean: Limit_{m->oo} (1/m) * Sum_{k=1..m} a(k) = Sum_{p prime} ((p^2*(p-1)/Product_{q prime <= p} q)) = 10.3344588090... . - Amiram Eldar, Jul 25 2022
EXAMPLE
n=30: below 30 coprimes to 30 phi(30)=8 numbers are relevant but each 1 or primes; so a(8)>30; the first suitable number is a(30)=49.
MATHEMATICA
m=0; Table[fla=1; Do[s=GCD[n, k]; If[Equal[s, 1]&&!PrimeQ[n]&&!Equal[n, 1]&& Equal[fla, 1], m=m+1; Print[n]; fla=0], {n, 1, 130}], {k, 1, 256}]
PROG
(PARI) A089090(n) = forprime(p=2, , if(n%p, return(p*p))); \\ Antti Karttunen, Dec 19 2018
KEYWORD
easy,nonn
AUTHOR
Labos Elemer, Nov 26 2003
EXTENSIONS
Offset corrected by Antti Karttunen, Dec 19 2018
STATUS
approved
Number of exponent-3 class 2 groups of order 3^n.
+10
3
0, 0, 1, 3, 7, 24, 103, 1565, 602419, 4896600938, 5876589263966179
OFFSET
0,4
LINKS
J. H. Conway, Heiko Dietrich and E. A. O'Brien, Counting groups: gnus, moas and other exotica.
Bettina Eick and E. A. O'Brien, Enumerating p-groups. Group theory. J. Austral. Math. Soc. Ser. A 67 (1999), no. 2, 191-205.
CROSSREFS
KEYWORD
nonn,hard,more
AUTHOR
Eric M. Schmidt, Dec 21 2014
STATUS
approved
Square array, read by antidiagonals, upwards: T(n,k) is the number of groups of order prime(k+1)^n.
+10
0
1, 1, 1, 2, 1, 1, 5, 2, 1, 1, 14, 5, 2, 1, 1, 51, 15, 5, 2, 1, 1, 267, 67, 15, 5, 2, 1, 1, 2328, 504, 77, 15, 5, 2, 1, 1, 56092, 9310, 684, 83, 15, 5, 2, 1, 1, 10494213, 1396077, 34297, 860, 87, 15, 5, 2, 1, 1, 49487367289, 5937876645
OFFSET
0,4
COMMENTS
In 1960, Higman conjectured that the function f(n,p) giving the number of groups of prime-power order p^n, for fixed n and varying p, is a "Polynomial in Residue Classes" (PORC), i.e., there exist an integer M and polynomials q_i(x) in Z[x] (i = 1, 2, ..., M) such that if p = i mod M, then f(n,p) = q_i(p). The conjecture is confirmed for n <= 7.
LINKS
H. U. Besche, B. Eick, and E. A. O'Brien. A Millennium Project: Constructing Small Groups, Internat. J. Algebra and Computation, 12 (2002), 623-644.
David Burrell, On the number of groups of order 1024, Communications in Algebra, 2021, 1-3.
David Burrell, The number of p-groups of order 19,683 and new lists of p-groups, Communications in Algebra, Vol. 51 - Issue 6 (2023), 2673-2679.
Groupprops, PORC function
Graham Higman, Enumerating p-Groups. I: Inequalities, Proc. London Math. Soc. Vol. 10 (1960), 24-30.
Graham Higman, Enumerating p-Groups. II: Problem whose solution is PORC, Proc. London Math. Soc. Vol. 10 (1960), 566-582.
Eamonn O'Brien, Polycyclic groups
Michael Vaughan-Lee, Graham Higman’s PORC Conjecture, Jahresbericht der Deutschen Mathematiker-Vereinigung Vol. 114 (2012), 89-16.
Michael Vaughan-Lee, Groups of order p^8 and exponent p, International Journal of Group Theory Vol. 4 (2015), 25-42.
Brett E. Witty, Enumeration of groups of prime-power order, PhD thesis, 2006.
FORMULA
T(n,0) = A000679(n).
T(n,1) = A090091(n).
T(n,2) = A090130(n).
T(n,3) = A090140(n).
T(0,n) = 1, T(1,n) = 1, T(2,n) = 2 and T(3,n) = 5.
T(4,0) = 14 and T(4,n) = 15, n > 0.
T(5,n) = A232105(n+1).
T(6,n) = A232106(n+1).
T(7,n) = A232107(n+1).
EXAMPLE
Array begins:
(p = 2) (p = 3) (p = 5) (p = 7) (p = 11) (p = 13) ...
1 1 1 1 1 1 ...
1 1 1 1 1 1 ...
2 2 2 2 2 2 ...
5 5 5 5 5 5 ...
14 15 15 15 15 15 ...
51 67 77 83 87 97 ...
267 504 684 860 1192 1476 ...
2328 9310 34297 113147 750735 1600573 ...
...
MAPLE
with(GroupTheory): T:=proc(n, k) NumGroups(ithprime(k+1)^n); end proc: seq(seq(T(n-k, k), k=0..n), n=0..10); # Muniru A Asiru, Oct 03 2018
MATHEMATICA
(* This program uses Higman's PORC functions to compute the rows 0 to 7 *)
f[0, p_] := 1; f[1, p_] := 1; f[2, p_] := 2; f[3, p_] := 5;
f[4, p_] := If[p == 2, 14, 15];
f[5, p_] := If[p == 2, 51, If[p == 3, 67, 61 + 2*p + 2*GCD[p - 1, 3] + GCD[p - 1, 4]]];
f[6, p_] := If[p == 2, 267, If[p == 3, 504, 3*p^2 + 39*p + 344 + 24*GCD[p - 1, 3] + 11*GCD[p - 1, 4] + 2*GCD[p - 1, 5]]];
f[7, p_] := If[p == 2, 2328, If[p == 3, 9310, If[p == 5, 34297, 3*p^5 + 12*p^4 + 44*p^3 + 170*p^2 + 707*p + 2455 + (4*p^2 + 44*p + 291)*GCD[p - 1, 3] + (p^2 + 19*p + 135)*GCD[p - 1, 4] + (3*p + 31)*GCD[p - 1, 5] + 4*GCD[p - 1, 7] + 5*GCD[p - 1, 8] + GCD[p - 1, 9]]]];
tabl[kk_] := TableForm[Table[f[n, Prime[k+1]], {n, 0, 7}, {k, 0, kk}]];
PROG
(GAP) # This program computes the first 45 terms, rows 0..8.
P:=Filtered([1..300], IsPrime);;
T1:=List([0..7], n->List([0..15], k->NumberSmallGroups(P[k+1]^n)));;
T2:=[Flat(Concatenation(List([8], n->List([0], k->NumberSmallGroups(P[k+1]^n))), List([1..14], i->0)))];;
T:=Concatenation(T1, T2);;
b:=List([2..10], n->OrderedPartitions(n, 2));;
a:=Flat(List([1..Length(b)], i->List([1..Length(b[i])], j->T[b[i][j][2]][b[i][j][1]]))); # Muniru A Asiru, Oct 01 2018
CROSSREFS
KEYWORD
tabl,nonn,hard,more
AUTHOR
EXTENSIONS
a(55)=T(10,0) corrected by David Burrell, Jun 07 2022
a(56)=T(9,1) from David Burrell, Sep 01 2023
STATUS
approved

Search completed in 0.011 seconds