[go: up one dir, main page]

login
A053669
Smallest prime not dividing n.
147
2, 3, 2, 3, 2, 5, 2, 3, 2, 3, 2, 5, 2, 3, 2, 3, 2, 5, 2, 3, 2, 3, 2, 5, 2, 3, 2, 3, 2, 7, 2, 3, 2, 3, 2, 5, 2, 3, 2, 3, 2, 5, 2, 3, 2, 3, 2, 5, 2, 3, 2, 3, 2, 5, 2, 3, 2, 3, 2, 7, 2, 3, 2, 3, 2, 5, 2, 3, 2, 3, 2, 5, 2, 3, 2, 3, 2, 5, 2, 3, 2, 3, 2, 5, 2, 3, 2, 3, 2, 7, 2, 3, 2, 3, 2, 5, 2, 3, 2, 3, 2, 5, 2, 3, 2
OFFSET
1,1
COMMENTS
Smallest prime coprime to n.
Smallest k >= 2 coprime to n.
a(#(p-1)) = a(A034386(p-1)) = p is the first appearance of prime p in sequence.
a(A005408(n)) = 2; for n > 2: a(n) = A112484(n,1). - Reinhard Zumkeller, Sep 23 2011
Average value is 2.920050977316134... = A249270. - Charles R Greathouse IV, Nov 02 2013
Differs from A236454, "smallest number not dividing n^2", for the first time at n=210, where a(210)=11 while A236454(210)=8. A235921 lists all n for which a(n) differs from A236454. - Antti Karttunen, Jan 26 2014
LINKS
Dylan Fridman, Juli Garbulsky, Bruno Glecer, James Grime and Massi Tron Florentin, A Prime-Representing Constant, The American Mathematical Monthly, Vol. 126, No. 1 (2019), pp. 70-73; ResearchGate link.
James Grime and Brady Haran, 2.920050977316, Numberphile video (2020)
Igor Rivin, Geodesics with one self-intersection, and other stories, Advances in Mathematics, Vol. 231, No. 5 (2012), pp. 2391-2412; arXiv preprint, arXiv:0901.2543 [math.GT], 2009-2011.
FORMULA
a(n) = A071222(n-1)+1. [Because the right hand side computes the smallest k >= 2 such that gcd(n,k) = gcd(n-1,k-1) which is equal to the smallest k >= 2 coprime to n] - Antti Karttunen, Jan 26 2014
a(n) = 1 + Sum_{k=1..n}(floor((n^k)/k!)-floor(((n^k)-1)/k!)) = 2 + Sum_{k=1..n} A001223(k)*( floor(n/A002110(k))-floor((n-1)/A002110(k)) ). - Anthony Browne, May 11 2016
a(n!) = A151800(n). - Anthony Browne, May 11 2016
a(2k+1) = 2. - Bernard Schott, Jun 03 2019
Asymptotic mean: lim_{n->oo} (1/n) * Sum_{k=1..n} a(k) = A249270. - Amiram Eldar, Oct 29 2020
a(n) = A000040(A257993(n)) = A020639(A276086(n)) = A276086(n) / A324895(n). - Antti Karttunen, Apr 24 2022
a(n) << log n. For every e > 0, there is some N such that for all n > N, a(n) < (1 + e)*log n. - Charles R Greathouse IV, Dec 03 2022
EXAMPLE
a(60) = 7, since all primes smaller than 7 divide 60 but 7 does not.
MAPLE
f:= proc(n) local p;
p:= 2;
while n mod p = 0 do p:= nextprime(p) od:
p
end proc:
map(f, [$1..100]); # Robert Israel, May 18 2016
MATHEMATICA
Table[k := 1; While[Not[GCD[n, Prime[k]] == 1], k++ ]; Prime[k], {n, 1, 60}] (* Stefan Steinerberger, Apr 01 2006 *)
With[{prs=Prime[Range[10]]}, Flatten[Table[Select[prs, !Divisible[ n, #]&, 1], {n, 110}]]] (* Harvey P. Dale, May 03 2012 *)
PROG
(Haskell)
a053669 n = head $ dropWhile ((== 0) . (mod n)) a000040_list
-- Reinhard Zumkeller, Nov 11 2012
(PARI) a(n)=forprime(p=2, , if(n%p, return(p))) \\ Charles R Greathouse IV, Nov 20 2012
(Scheme) (define (A053669 n) (let loop ((i 1)) (cond ((zero? (modulo n (A000040 i))) (loop (+ i 1))) (else (A000040 i))))) ;; Antti Karttunen, Jan 26 2014
(Python)
from sympy import nextprime
def a(n):
p = 2
while True:
if n%p: return p
else: p=nextprime(p) # Indranil Ghosh, May 12 2017
(Python)
# using standard library functions only
import math
def a(n):
k = 2
while math.gcd(n, k) > 1: k += 1
return k # Ely Golden, Nov 26 2020
CROSSREFS
One more than A071222(n-1).
Sequence in context: A123556 A284017 A236454 * A342309 A112047 A112048
KEYWORD
nonn,nice,easy
AUTHOR
Henry Bottomley, Feb 15 2000
EXTENSIONS
More terms from Andrew Gacek (andrew(AT)dgi.net), Feb 21 2000 and James A. Sellers, Feb 22 2000
Entry revised by David W. Wilson, Nov 25 2006
STATUS
approved