[go: up one dir, main page]

login
A090130
Number of groups of order 5^n.
8
1, 1, 2, 5, 15, 77, 684, 34297
OFFSET
0,3
REFERENCES
G. Bagnera, La composizione dei Gruppi finiti il cui grado e la quinta potenza di un numero primo, Ann. Mat. Pura Appl. (3), 1 (1898), 137-228.
Hans Ulrich Besche, Bettina Eick and E. A. O'Brien, A Millennium Project: Constructing Small Groups, International Journal of Algebra and Computation, Vol. 12, No 5 (2002), 623-644.
W. Burnside, Theory of Groups of Finite Order, Dover, NY, 1955.
LINKS
M. F. Newman, E. A. O'Brien and M. R. Vaughan-Lee, Groups and nilpotent Lie rings whose order is the sixth power of a prime, J. Algebra, 278 (2004), 383-401.
E. A. O'Brien and M. R. Vaughan-Lee, The groups of order p^7 for odd prime p, J. Algebra 292, 243-258, 2005. [Eamonn O'Brien, Mar 06 2010]
FORMULA
For a prime p >= 5, the number of groups of order p^n begins 1, 1, 2, 5, 15, 61 + 2*p + 2*gcd (p - 1, 3) + gcd (p - 1, 4), 3*p^2 + 39*p + 344 + 24*gcd(p - 1, 3) + 11*gcd(p - 1, 4) + 2*gcd(p - 1, 5), ...
PROG
(GAP) A090130 := List([0..7], n -> NumberSmallGroups(5^n)); # Muniru A Asiru, Oct 15 2017
CROSSREFS
KEYWORD
nonn
AUTHOR
Eamonn O'Brien (obrien(AT)math.auckland.ac.nz), Jan 22 2004
EXTENSIONS
Corrected and extended by David Radcliffe, Feb 24 2010
Corrected and extended by Eamonn O'Brien, Mar 06 2010
STATUS
approved