Computational aspects of finite *p***-groups**

Heiko Dietrich

School of Mathematical Sciences Monash University Clayton VIC 3800, Australia

5th – 14th November 2016 International Centre for Theoretical Sciences – Bangalore

► Go to Overview

Welcome! And a bit about myself...

University of Braunschweig (2000-2009)

- one of the four GAP centres
- PhD (on *p*-groups with maximal class)

University of Auckland (2009-2011)

- work with Magma
- further research on *p*-groups

University of Trento (2011-2013)

• more work with GAP

Monash University (since 2013) Hello!

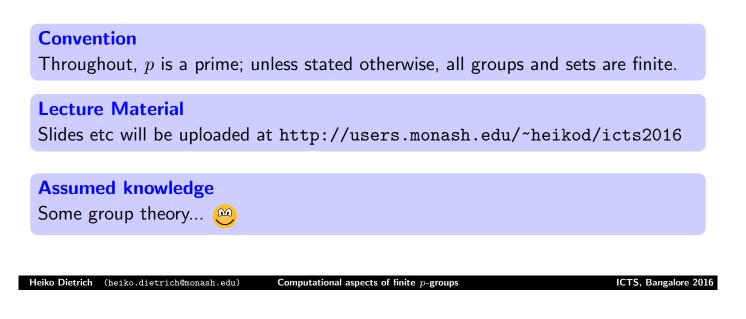
Hello!

Welcome!

In this lecture series we discuss

Computational Aspects of Finite *p***-Groups.**

A finite *p*-group is a group whose order is a positive power of the prime *p*.



Why *p*-groups?

Outline

Why *p*-groups?

Motivation

Resources

There's an abundant supply of *p*-groups

ord.	#	ord.	#	ord.	#	ord.	#	ord.	#
1	1	 14	2	 27	5	 40	14	53	1
2	1	 15	1	 28	4	 41	1	54	15
3	1	 16	14	 29	1	 42	6	55	2
4	2	 17	1	 30	4	 43	1	56	13
5	1	 18	5	 31	1	 44	4	57	2
6	2	 19	1	 32	51	 45	2	58	2
7	1	 20	5	 33	1	 46	2	59	1
8	5	 21	2	 34	2	 47	1	60	13
9	2	 22	2	 35	1	 48	52	61	1
10	2	 23	1	 36	14	 49	2	62	2
11	1	 24	15	 37	1	 50	5	63	4
12	5	 25	2	 38	2	 51	1	64	267
13	1	 26	2	 39	2	52	5	65	1

• there are $p^{2n^3/27+O(n^{5/3})}$ groups of order p^n proved and improved by Higman (1960), Sims (1965), Newman & Seeley (2007)

• conjecture: "almost all" groups are *p*-groups (2-groups) for example, 99% of all groups of order < 2000 are 2-groups

ups? Outline Resources
οι

Important aspects of *p*-groups

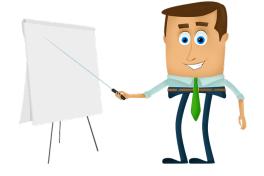
Some comments on *p*-groups

- Folklore conjecture: "almost all groups are *p*-groups"
- Sylow Theorem: every nontrivial group has p-groups as subgroups
- Nilpotent groups: direct products of *p*-groups
- Solvable groups: iterated extensions of *p*-groups
- Counterpart to theory of finite simple groups
- Challenge: classify *p*-groups...
- Many "reductions" to *p*-groups exist: Restricted Burnside Problem, cohomology, Schur multiplier, *p*-local subgroups, ...

p-groups are fascinating – and accessible to computations! So let's do it...

Outline of this lecture series

- motivation
 pc presentations Go there
 p-quotient algorithm Go there
- p-group generation Go there
- Solution of the second sec
- **o** isomorphisms Go there
- automorphisms Go there
- 8 coclass theory So there



Heiko Dietrich (heiko.dietrich@monash.edu) Com	putational aspects of finite p -groups		ICTS, Bangalore 2016
Motivation Hello!	Why <i>p</i> -groups?	Outline	Resources
Main resources*		*thanks to E. for providing	
 Handbook of computation D. Holt, B. Eick, E. A. O'B Chapman & Hall/CRC, 200 	rien		
 The <i>p</i>-group generation a E. A. O'Brien J. Symb. Comp. 9, 677-698 	-		
	to write a sim on the perform algorithm is de A	¹ Sourbodie Computation (1900) 9, 677-698 The Action of Computation (1900) 9, 677-698 Department of Mathematics, 	end Computer Sciencer, WY 33233 USA axion of his dish blothday, 8889 Ching descriptions of Patroups are the electrism are provided.

Central Series

Collection

pc presentations

► Go to Overview					
► Go to <i>p</i> -Quotient Algorithm					
Heiko Dietrich (heiko.dietrich@monash.edu)	Computational	aspects of finite p -grou	ips	ICTS,	Bangalore 2016
Polycyclic Presentations	Presentations	Central Series	Polycyclic Groups	Collection	WPCP's

Groups and computers

How to describe groups in a computer?

For example, the dihedral group D_8 can be defined as a ...

• ... permutation group

$$G = \langle (1, 2, 3, 4), (1, 3) \rangle;$$

• ... matrix group

 $G = \langle \left(\begin{smallmatrix} 0 & 1 \\ 2 & 0 \end{smallmatrix}\right), \left(\begin{smallmatrix} 1 & 0 \\ 0 & 2 \end{smallmatrix}\right) \rangle \leq \operatorname{GL}_2(3);$

• ... finitely presented group

$$G = \langle r, m \mid r^4, m^2, r^m = r^3 \rangle.$$

Best for *p*-groups: (polycyclic) presentations!

Presentation

Central Series

Collection

Group presentations

Let F be the free group on a set $X \neq \emptyset$; let \mathcal{R} be a set of words in $X \sqcup X^{-1}$. If $R = \mathcal{R}^F$ is the normal closure of \mathcal{R} in F, then

$$G = F/R$$

is the group defined by the **presentation** $\{X \mid \mathcal{R}\}$ with **generators** X and **relators** \mathcal{R} ; we also write $G = \langle X \mid \mathcal{R} \rangle$ and call $\langle X \mid \mathcal{R} \rangle$ a presentation for G. Informally, it is the "largest" group generated by X and satisfying the relations R.

Example 1

Let
$$X = \{r, m\}$$
 and $\mathcal{R} = \{r^4, m^2, \overbrace{m^{-1}rmr^{-3}}^{\text{relator}}\}$, and
 $G = \langle X \mid \mathcal{R} \rangle = \langle r, m \mid r^4, m^2, \underbrace{r^m = r^3}_{\text{relation}} \rangle.$

What can we say about G? Well... $r^m = r^3$ means $rm = mr^3$, so:

Presentations

- $G = \{m^i r^j \mid i = 0, 1 \text{ and } j = 0, 1, 2, 3\}$, so $|G| \le 8$;
- $D_8 = \langle r, m \rangle$ with r = (1, 2, 3, 4) and m = (1, 3) satisfies \mathcal{R} ; thus $G \cong D_8$.

 Heiko Dietrich (heiko.dietrich@monash.edu)
 Computational aspects of finite p-groups
 ICTS, Bangalore 2016

Polycyclic Presentation

Central Series

Polycyclic Groups

Collection WPCP's

Group presentations

Problem: many questions are algorithmically undecidable in general; eg

- is $\langle X \mid \mathcal{R} \rangle$ finite, trivial, or abelian?
- is a word in X trivial in $\langle X | \mathcal{R} \rangle$?

However:

- group presentations are very compact definitions of groups;
- many groups from algebraic topology arise in this form;
- some efficient algorithms exist, eg so-called "quotient algorithms"; (see also C. C. Sims: "Computation with finitely presented groups", 1994)
- many classes of groups can be studied via group presentations.

Let's discuss how to define *p*-groups by a useful presention!

Central Series

Collection

Background: central series

Center

If G is a p-group, then its center $Z(G) = \{g \in G \mid \forall h \in G : g^h = g\}$ is non-trivial.

This leads to the **upper central series** of a p-group G defined as

$$1 = \zeta_0(G) < \zeta_1(G) < \ldots < \zeta_c(G) = G$$

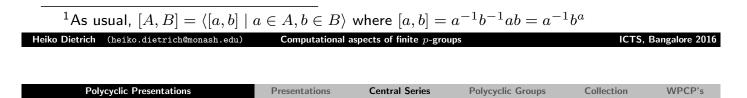
where $\zeta_0(G) = 1$ and each $\zeta_{i+1}(G)$ is defined by $\zeta_{i+1}(G)/\zeta_i(G) = Z(G/\zeta_i(G))$; it is the fastest ascending series with central sections.

Related is the lower central series

$$G = \gamma_1(G) > \gamma_2(G) > \ldots > \gamma_{c+1}(G) = 1$$

where $\gamma_1(G) = G$ and each $\gamma_{i+1}(G)$ is defined as¹ $\gamma_{i+1}(G) = [G, \gamma_i(G)]$; it is the fastest descending series with central sections.

The number c is the same for both series; the **(nilpotency) class** of G.



Example: central series

Example 2

Let $G = D_{16} = \langle r, m \rangle$ with r = (1, 2, 3, 4, 5, 6, 7, 8), m = (1, 3)(4, 8)(5, 7). Then G has class c = 3; its lower central series is

$$G > \langle r^2 \rangle > \langle r^4 \rangle > 1$$

and has sections² $G/\gamma_2(G) \cong C_2 \times C_2$, $\gamma_2(G)/\gamma_3(G) = C_2$, and $\gamma_3(G) = C_2$. We can refine this series so that all section are isomorphic to C_2 :

$$G > \langle r \rangle > \langle r^2 \rangle > \langle r^4 \rangle > 1.$$

In general: every central series of a p-group G can be refined to a **composition** series

$$G = G_1 > G_2 > \ldots > G_{n+1} = 1$$

where each $G_i \leq G$ and $G_i/G_{i+1} \cong C_p$; thus G is a **polycyclic group**.

 Heiko Dietrich
 (heiko.dietrich@monash.edu)
 Computational aspects of finite p-groups

²If n is a positive integer, then C_n denotes a cyclic group of size n.

Polycyclic groups

Polycyclic group

The group G is **polycyclic** if it admits a **polycyclic series**, that is, a subgroup chain $G = G_1 \ge \ldots \ge G_{n+1} = 1$ in which each $G_{i+1} \le G_i$ and G_i/G_{i+1} is cyclic.

Polycyclic groups: solvable groups whose subgroups are finitely generated.

Example 3 The group $G = \langle (2, 4, 3), (1, 3)(2, 4) \rangle \cong Alt(4)$ is polycyclic with series $G = G_1 > G_2 > G_3 > G_4 = 1$ where $G_2 = \langle (1, 3)(2, 4), (1, 2)(3, 4) \rangle = V_4 \trianglelefteq G_1$ $G_3 = \langle (1, 2)(3, 4) \rangle \trianglelefteq G_2$

Each G_i/G_{i+1} is cyclic, so there is $g_i \in G_i \setminus G_{i+1}$ with $G_i/G_{i+1} = \langle g_i G_{i+1} \rangle$; for example, $g_1 = (2, 4, 3)$, $g_2 = (1, 3)(2, 4)$, $g_3 = (1, 2)(3, 4)$.

 Heiko Dietrich (heiko.dietrich@monash.edu)
 Computational aspects of finite p-groups
 ICTS, Bangalore 2016

Central Series

Polycyclic Groups

Collection

WPCP's

Polycyclic Sequence

Polycyclic sequence

Let $G = G_1 \ge \ldots \ge G_{n+1} = 1$ be a polycyclic series. A related **polycyclic sequence** X with **relative orders** R(X) is

Presentations

$$X = [g_1, \dots, g_n]$$
 with $R(X) = [r_1, \dots, r_n]$

where each $g_i \in G_i \setminus G_{i+1}$ and $r_i = |g_i G_{i+1}| = |G_i/G_{i+1}|$. A polycyclic series is also called **pcgs** (polycyclic generating set).

Important observation: each $G_i = \langle g_i, g_{i+1}, \ldots, g_n \rangle$ and $|G_i| = r_i \cdots r_n$.

Example 4

Let $G = D_{16} = \langle r, m \rangle$ with r = (1, 2, 3, 4, 5, 6, 7, 8) and m = (1, 3)(4, 8)(5, 7). Examples of pcgs:

- X = [m, r] with R(X) = [2, 8]: $G = \langle m, r \rangle > \langle r \rangle > 1$;
- $X = [m, r, r^4]$ with R(X) = [2, 4, 2]: $G = \langle m, r, r^4 \rangle > \langle r, r^4 \rangle > \langle r^4 \rangle > 1$;
- $X = [m, r, r^3, r^2]$ with R(X) = [2, 1, 2, 4]; note that $\langle r, r^3, r^2 \rangle = \langle r^3, r^2 \rangle$.

Normal Forms

Lemma: Normal Form

Let $X = [g_1, \ldots, g_n]$ be a pcgs for G with $R(X) = [r_1, \ldots, r_n]$. If $g \in G$, then $g = g_1^{e_1} \cdots g_n^{e_n}$ for unique $e_i \in \{0, \ldots, r_i - 1\}$.

We call $g = g_1^{e_1} \cdots g_n^{e_n}$ the **normal form** with respect to X.

Proof.

Let $g \in G$ be given; we use induction on n.

- If n = 1, then $G = \langle g_1 \rangle \cong C_{r_1}$ and the lemma holds; now let $n \ge 2$.
- Since $G/G_2 = \langle g_1 G_2 \rangle \cong C_{r_1}$, we can write $gG_2 = g_1^{e_1}G_2$ for a unique $e_1 \in \{0, \dots, r_1 1\}$, that is, $g' = g_1^{-e_1}g \in G_2$.
- $X' = [g_2, \ldots, g_n]$ is pcgs of G_2 with $R(X') = [r_2, \ldots, r_n]$, so by induction $g' = g_1^{-e_1}g = g_2^{e_2} \cdots g_n^{e_n}$ for unique $e_i \in \{0, \ldots, r_i 1\}$.
- In conclusion, $g = g_1^{e_1} \cdots g_n^{e_n}$ as claimed.

Example: Normal Forms

Example 5 A pcgs of G = Alt(4) with R(X) = [3, 2, 2] is $X = [g_1, g_2, g_3]$ where $g_1 = (1, 2, 3), \quad g_2 = (1, 2)(3, 4), \quad g_3 = (1, 3)(2, 4).$ This yields $G = G_1 > G_2 > G_3 > G_4 = 1$ with each $G_i = \langle g_i, \dots, g_3 \rangle$. Now consider $g = (1, 2, 4) \in G.$ First, we have $gG_2 = g_1^2G_2$, so $g' = g_1^{-2}g = (1, 4)(2, 3) \in G_2.$ Second, $g'G_3 = g_2G_3$, so $g'' = g_2^{-1}g' = (1, 3)(2, 4) = g_3 \in G_3.$ In conclusion, $g = g_1^2g' = g_1^2g_2g'' = g_1^2g_2g_3.$

Polycyclic group to presentation

Let G be group with pcgs $X = [g_1, \ldots, g_n]$ and $R(X) = [r_1, \ldots, r_n]$; define $G_i = \langle g_i, \ldots, g_n \rangle$. There exist $a_{*,j}, b_{*,*,j} \in \{0, 1, \ldots, r_j - 1\}$ with:

• $g_i^{r_i} = g_{i+1}^{a_{i,i+1}} \cdots g_n^{a_{i,n}}$ (for all *i*, since $G_i/G_{i+1} = \langle g_i G_{i+1} \rangle \cong C_{r_i}$) • $g_i^{g_j} = g_{i+1}^{b_{i,j,j+1}} \cdots g_n^{b_{i,j,n}}$ (for all j < i, since $g_i \in G_{j+1} \trianglelefteq G_j$).

A polycyclic presentation (PCP) for GLet $H = \langle x_1, \ldots, x_n \mid \mathcal{R} \rangle$ such \mathcal{R} contains exactly the above relations:

 $x_i^{r_i} = x_{i+1}^{a_{i,i+1}} \cdots x_n^{a_{i,n}}$ and $x_i^{x_j} = x_{j+1}^{b_{i,j,j+1}} \cdots x_n^{b_{i,j,n}}$.

Then $H \cong G$ with pcgs $X = [x_1, \ldots, x_n]$ and $R(X) = [r_1, \ldots, r_n]$.

Proof.

Define $\varphi \colon H \to G$ by $x_i \mapsto g_i$. The elements g_1, \ldots, g_n satisfy the relations in \mathcal{R} , so φ is an epimorphism by **von Dyck's Theorem**. By construction, H is polycyclic with pcgs X and order at most |G|. Thus, φ is an isomorphism.

	Computational aspects of finite <i>p</i> -groups			ICTS, Bangalore 2016		
Polycyclic Presentations Pr	resentations	Central Series	Polycyclic Groups	Collection	WPCP's	

Polycyclic group to presentation

Example 6 Let G = Alt(4) with pcgs $X = [g_1, g_2, g_3]$ and R(X) = [3, 2, 2] where $q_1 = (1, 2, 3), \quad q_2 = (1, 2)(3, 4), \quad q_3 = (1, 3)(2, 4).$ Then $g_1^3 = g_2^2 = g_3^2 = 1$, $g_2^{g_1} = g_2 g_3$, $g_3^{g_1} = g_2$, $g_3^{g_2} = g_3$, and so $G \cong \langle x_1, x_2, x_3 \mid x_1^3 = x_2^2 = x_3^2 = 1, \ x_2^{x_1} = x_2 x_3, \ x_3^{x_1} = x_2, \ x_3^{x_2} = x_3 \rangle.$

Theorem

Every pcgs determines a unique polycyclic presentation; every polycyclic group can be defined by a polycyclic presentation.

Pc presentation to group

Polycyclic presentation (pcp)

A presentation $\langle x_1, \ldots, x_n | \mathcal{R} \rangle$ is a **polycyclic presentation** with **power exponents** $s_1, \ldots, s_n \in \mathbb{N}$ if the only relations in \mathcal{R} are

$$\begin{array}{lll} x_i^{s_i} &=& x_{i+1}^{a_{i,i+1}} \cdots x_n^{a_{i,n}} & \text{(all } i, \text{ each } a_{i,k} \in \{0, \dots, s_k - 1\} \\ x_i^{x_j} &=& x_{j+1}^{b_{i,j,j+1}} \cdots x_n^{b_{i,j,n}} & \text{(all } j < i, \text{ each } b_{i,j,k} \in \{0, \dots, s_k - 1\} \end{array}$$

We write $Pc\langle x_1, \ldots, x_n | \mathcal{R} \rangle$ and **omit trivial commutator relations** $x_i^{x_j} = x_i$. The group defined by a pc-presentation is a **pc-group**.

Theorem

If $G = \operatorname{Pc}\langle x_1 \dots, x_n | \mathcal{R} \rangle$ with power exps $[s_1, \dots, s_n]$, then $X = [x_1, \dots, x_n]$ is a pcgs of G. If $g \in G$, then $g = x_1^{e_1} \cdots x_n^{e_n}$ for some $e_i \in \{0, \dots, s_i - 1\}$.

Careful: $(x_iG_i)^{s_i} = 1$ only implies that $r_i = |G_i/G_{i+1}|$ divides s_i , not $r_i = s_i$; so in general

$$R(X) = [r_1, \ldots, r_n] \neq [s_1, \ldots, s_n].$$

Heiko Dietrich (heiko.dietrich@monash.edu)

Computational aspects of finite p-groups

Central Series

Polycyclic Groups

ICTS, Bangalore 2016

WPCP's

Collection

Consistent pc presentations

Note: Only power exponents (not relative orders) are visible in pc presentations.

Example 7 Let $G = Pc\langle x_1, x_2, x_3 | x_1^3 = x_3, x_2^2 = x_3, x_3^5 = 1, x_2^{x_1} = x_2x_3 \rangle$; this is a pc-group with pcgs $X = [x_1, x_2, x_3]$ and power exponents S = [3, 2, 5]. We show R(X) = [3, 2, 1], so |G| = 6: First, note that $x_2^{10} = x_3^5 = 1$, so $|x_2| | 10$. Second, $x_2^{x_1} = x_2x_3 = x_2^3$ so $x_2^{27} = x_2^{(x_1^3)} = x_2^{x_3} = x_2^{(x_2^2)} = x_2$, and thus $|x_2| | 26$. This implies that $5 \nmid |x_2|$, and forces $x_3 = 1$ in G. Note that $x_1^0 x_2^0 x_3^0 = 1 = x_1^0 x_2^0 x_3^1$ are two normal forms (wrt power exponents).

Consistent pc presentation

A pc-presentation with power exponents S is **consistent** if and only if every group element has a unique normal form with respect to S; otherwise it is **inconsistent**.

How to check consistency? ~> use collection and consistency checks!

Collection

Let $G = \operatorname{Pc}\langle x_1, \ldots, x_n \mid \mathcal{R} \rangle$ with power exponents $S = [s_1, \ldots, s_n]$.

Consider a reduced word $w = x_{i_1}^{e_1} \cdots x_{i_r}^{e_r}$, that is, each $i_j \neq i_{j+1}$; we can assume $e_j \in \mathbb{N}$, otherwise eliminate using power relations.

Collection

Let $w = x_{i_1}^{e_1} \cdots x_{i_r}^{e_r}$ as above and use the previous notation:

- the word w is **collected** if w is the normal form wrt S, that is, $i_1 < \ldots < i_r$ and each $e_j \in \{0, \ldots, s_{i_i} 1\}$;
- if w is not collected, then it has a **minimal non-normal subword** of w, that is, a subword u of the form

$$u = x_{i_j}^{e_j} x_{i_{j+1}}$$
 with $i_j > i_{j+1}$, eg $u = x_3^2 x_1$

Central Series

or

$$u = x_{i_j}^{s_{i_j}}$$
 eg $u = x_2^5$ with $s_2 = 5$.

Collection is a method to obtain collected words.

 Heiko Dietrich (heiko.dietrich@monash.edu)
 Computational aspects of finite p-groups
 ICTS, Bangalore 2016

 Polycyclic Presentations
 Presentations
 Central Series
 Polycyclic Groups
 Collection
 WPCP's

Collection algorithm

Let $G = \operatorname{Pc}\langle x_1, \ldots, x_n | \mathcal{R} \rangle$ with power exponents $S = [s_1, \ldots, s_n]$. Consider a reduced word $w = x_{i_1}^{e_1} \cdots x_{i_r}^{e_r}$, that is, each $i_j \neq i_{j+1}$; we can assume $e_j \in \mathbb{N}$, otherwise eliminate using power relations.

Collection algorithm

Input: polycyclic presentation $Pc\langle x_1, \ldots, x_n | \mathcal{R} \rangle$ and word w in X**Output:** a collected word representing w

Repeat the following until w has no minimal non-normal subword:

- choose minimal non-normal subword $u = x_{i_j}^{s_{i_j}}$ or $u = x_{i_j}^{e_j} x_{i_{j+1}}$;
- if $u = x_{i_j}^{s_{i_j}}$, then replace u by a suitable word in x_{i_j+1}, \ldots, x_n ; if $u = x_{i_j}^{e_j} x_{i_{j+1}}$, then replace u by $x_{i_{j+1}}u'$ with u' word in x_{i_j+1}, \ldots, x_n .

Theorem

The collection algorithm terminates.

Collection algorithm

If w contains more than one minimal non-normal subword, a rule is used to determine which of the subwords is replaced (making the process well-defined).

- Collection to the left: move all occurrences of x_1 to the beginning of the word; next, move all occurrences of x_2 left until adjacent to the x_1 's, etc.
- **Collection from the right**: the minimal non-normal subword nearest to the end of a word is selected.
- **Collection from the left**: the minimal non-normal subword nearest to the beginning of a word is selected.

Heiko Dietrich (heiko.dietrich@monash.ec	du) Computation	Computational aspects of finite p -groups			, Bangalore 2016
Polycyclic Presentations	Presentations	Central Series	Polycyclic Groups	Collection	WPCP's

Example: collection

Consider the group

$$D_{16} \cong \operatorname{Pc}\langle x_1, x_2, x_3, x_4 \mid x_1^2 = 1, x_2^2 = x_3 x_4, x_3^2 = x_4, x_4^2 = 1, \\ x_2^{x_1} = x_2 x_3, x_3^{x_1} = x_3 x_4 \rangle.$$

Aim: collect the word $x_3x_2x_1$.

Since power exponents are all "2", we only use generator indices:

"to the le	ft"	"from the	right"	" from	the	left"
$3\underline{21} =$	<u>31</u> 23	$3\underline{21} =$	<u>31</u> 23	<u>32</u> 1	=	$2\underline{31}$
=	13 <u>42</u> 3	=	$13\underline{42}3$		=	<u>21</u> 34
=	$1\underline{32}43$	=	$132\underline{43}$		=	$12\underline{33}4$
=	123 <u>43</u>	=	1 <u>32</u> 34		=	12 <u>44</u>
=	12 <u>33</u> 4	=	123334		=	12
=	$12\underline{44}$	=	1244			
=	12	=	12			

Collection

Consistency checks

Theorem 8: consistency checks

 $Pc\langle x_1, \ldots, x_n | \mathcal{R} \rangle$ with power exps $[s_1, \ldots, s_n]$ is consistent if and only if the normal forms of the following pairs of words coincide

 $\begin{array}{ll} x_k(x_j x_i) \text{ and } (x_k x_j) x_i & \text{ for } 1 \leq i < j < k \leq n, \\ (x_j^{s_j}) x_i \text{ and } x_j^{s_j - 1}(x_j x_i) & \text{ for } 1 \leq i < j \leq n, \\ x_j(x_i^{s_i}) \text{ and } (x_j x_i) x_i^{s_i - 1} & \text{ for } 1 \leq i < j \leq n, \\ x_j(x_j^{s_j}) \text{ and } (x_j^{s_j}) x_j & \text{ for } 1 \leq j \leq n, \end{array}$

where the subwords in brackets are to be collected first.

Example 9 If $G = Pc\langle x_1, x_2, x_3 \mid x_1^3 = x_3, x_2^2 = x_3, x_3^5 = 1, x_2^{x_1} = x_2x_3 \rangle$, then $(x_2^2)x_1 = x_3x_1 = x_1x_3$ and $x_2(x_2x_1) = x_2x_1x_2x_3 = x_1x_2^2x_3^2 = x_1x_3^3$. Since $x_1x_3 = x_1x_3^3$ are both normal forms, the presentation is *not* consistent. Indeed, we deduce that $x_3 = 1$ in G.

Heiko Dietrich (he	iko.dietrich@monash.edu)	Computational aspects of finite <i>p</i> -groups			ICTS, Bangalore 2016		
Polycycl	ic Presentations	Presentations	Central Series	Polycyclic Groups	Collection	WPCP's	

Weighted power-commutator presentation

So far we have seen that every p-group can be defined via a consistent polycyclic presentation.

However, the algorithms we discuss later require a special type of polycyclic presentations, namely, so-called **weighted power-commutator presentations**.

Weighted power-commutator presentation

A weighted power-commutator presentation (wpcp) of a *d*-generator group G of order p^n is $G = Pc\langle x_1, \ldots, x_n | \mathcal{R} \rangle$ such that $\{x_1, \ldots, x_d\}$ is a minimal generating set G and the relations are

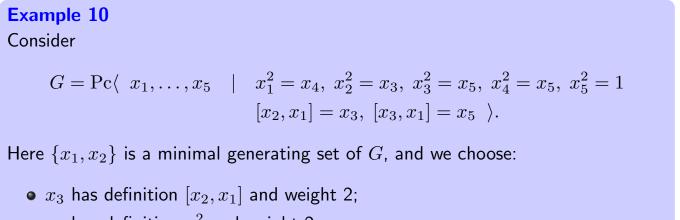
$$x_{j}^{p} = \prod_{k=j+1}^{n} x_{k}^{\alpha(j,k)} \qquad (1 \le j \le n, \ 0 \le \alpha(j,k) < p)$$
$$[x_{j}, x_{i}] = \prod_{k=j+1}^{n} x_{k}^{\beta(i,j,k)} \qquad (1 \le i < j \le n, \ 0 \le \beta(i,j,k) < p)$$

note that every $G_i = \langle x_i, \ldots, x_n \rangle$ is normal in G.

Moreover, each $x_k \in \{x_{d+1}, \ldots, x_n\}$ is the right side of some relation; choose one of these as the **definition** of x_k .

Heiko Dietrich	(heiko.dietrich@monash.edu)	Computational	aspects of finite p -grou	ICTS, Bangalore 2016		
Pol	ycyclic Presentations	Presentations	Central Series	Polycyclic Groups	Collection	WPCP's
	, ,					

Weighted power-commutator presentation



- x_4 has definition x_1^2 and weight 2;
- x_5 has definition $[x_3, x_1]$ and weight 3.

Weighted power-commutator presentation

Why are (w)pcp's useful?

- consistent pcp's allow us to solve the *word problem* for the group: given two words, compute their normal forms, and compare them
- the additional structure of wpcp's allows more efficient algorithms: for example: consistency checks, *p*-group generation (later)
- a wpcp exhibits a normal series G > G₁ > ... > G_n = 1: many algorithms work down this series and use induction: first solve problem for G/G_k, and then extend to solve the problem for G/G_{k+1}, and so eventually for G = G/G_n.
- ... how to compute wpcp's? $\rightarrow p$ -quotient algorithm (next lecture)

Heiko Dietrich	(heiko.dietrich@monash.edu)	Computational aspects of finite <i>p</i> -groups			ICTS, Bangalore 2016		
Pol	lycyclic Presentations	Presentations	Central Series	Polycyclic Groups	Collection	WPCP's	

Conclusion Lecture 1

Things we have discussed in the first lecture:

- polycyclic groups, sequences, and series
- polycyclic generating sets (pcgs) and relative orders
- polycyclic presentations (pcp), power exponents, and consistency
- normal forms and collection
- consistency checks
- weighted polycyclic presentations (**wpcp**)

p-quotient algorithm

 Go to Presentations Go to p-Group Generation 					
Heiko Dietrich (heiko.dietrich@monash.edu) p-Quotient Algorithm	Computati p-Class	ional aspects of finite Algorithm	p-groups Covering Group	Example	ICTS, Bangalore 2016 Burnside Problem

Conclusion Lecture 1

Things we have discussed in the first lecture:

- polycyclic groups, sequences, and series
- polycyclic generating sets (pcgs) and relative orders
- polycyclic presentations (pcp), power exponents, and consistency
- normal forms and collection
- consistency checks
- weighted polycyclic presentations (wpcp)

Conclusion Lecture 1

weighted polycyclic presentation (wpcp):

- ullet all relative orders p
- induced polycyclic series is chief series
- relations are partitioned into definitions and non-definitions

Example

Consider

$$G = \operatorname{Pc} \langle x_1, \dots, x_5 \mid x_1^2 = x_4, x_2^2 = x_3, x_3^2 = x_5, x_4^2 = x_5, x_5^2 = 1$$
$$[x_2, x_1] = x_3, [x_3, x_1] = x_5 \rangle.$$

Here $\{x_1, x_2\}$ is a minimal generating set, and we choose $[x_2, x_1] = x_3$ and $x_1^2 = x_4$ and $[x_3, x_1] = x_5$ as definitions for x_3 , x_4 , and x_5 , respectively.

Lecture 2: how to compute a wpcp?

Lower exponent-p series

Lower exponent *p*-series

The lower exponent-p series of a p-group G is

 $G = P_0(G) > P_1(G) > \ldots > P_c(G) = 1$

where each $P_{i+1}(G) = [G, P_i(G)]P_i(G)^p$; the *p*-class of G is c.

Important properties

- each $P_i(G)$ is characteristic in G;
- $P_1(G) = [G,G]G^p = \Phi(G)$, and $G/P_1(G) \cong C_p^d$ with $d = \operatorname{rank}(G)$;
- each section $P_i(G)/P_{i+1}(G)$ is G-central and elementary abelian;
- if G has p-class c, then its nilpotency class is at most c;
- if θ is a homomorphism, then $\theta(P_i(G)) = P_i(\theta(G))$;
- G/N has p-class c if and only if $P_c(G) \leq N$;
- weights: any wpcp on $\{a_1, \ldots, a_n\}$ satisfies $a_i \in P_{\omega(a_i)}(G) \setminus P_{\omega(a_i)+1}(G)$.

p-Class

Lower exponent-p series

Example 11

Consider

$$G = D_{16} = \Pr\langle a_1, a_2, a_3, a_4 \mid a_1^2 = 1, a_2^2 = a_3 a_4, a_3^2 = a_4, a_4^2 = 1$$
$$[a_2, a_1] = a_3, [a_3, a_1] = a_4 \rangle.$$

Here we can read off:

- $P_0(G) = G$
- $P_1(G) = [G, G]G^2 = \langle a_3, a_4 \rangle$
- $P_2(G) = [G, P_1(G)]P_1(G)^2 = \langle a_4 \rangle$
- $P_3(G) = [G, P_2(G)]P_2(G)^2 = 1$

So G has 2-class 3.

Heiko Dietrich	(heiko.dietrich@monash.edu)	Computational aspects of finite <i>p</i> -groups			ICTS, Bangalore 2016	
<i>p</i> -	Quotient Algorithm	p-Class	Algorithm	Covering Group	Example	Burnside Problem
<i>p</i> -	Quotient Algorithm	p-Class	Algorithm	Covering Group	Example	Burnside Problem

Computing a wpcp of a *p*-group

p-quotient algorithm3Input:a p-group $G = F/R = \langle x_1, \dots, x_n \mid \mathcal{R} \rangle$ Output:a wpcp of G

Top-level outline:

- compute wpcp of $G/P_1(G)$ and epimorphism $G \to G/P_1(G)$, then iterate:
- 2 given wpcp of $G/P_k(G)$ and epimorphism $G \to G/P_k(G)$, compute wpcp of $G/P_{k+1}(G)$ and epimorphism $G \to G/P_{k+1}(G)$;

For the second step, we use the so-called *p*-cover of $G/P_k(G)$.

More general: a "p-quotient algorithm" computes a consistent wpcp of the largest p-class k quotient (if it exists) of any finitely presented group.

³Historically: MacDonald (1974), Havas & Newman (1980), Newman & O'Brien (1996)

Computing a wpcp of $G/P_1(G)$

Note that $G/P_1(G)$ is elementary abelian.

Computing wpcp of $G/P_1(G)$

Input: a p-group $G = F/R = \langle x_1, \dots, x_n \mid \mathcal{R} \rangle$

Output: a wpcp of $G/P_1(G)$ and epimorphism $\theta \colon G \to G/P_1(G)$

Approach:

() abelianise relations, take exponents modulo p, write these in matrix M

2 compute solution space of M over GF(p)

Then:

- dimension d of solution space is rank of G, that is, $G/P_1(G) \cong C_p^d$
- generating set of $G/P_1(G)$ lifts to subset of given generators;

set $G/P_1(G) = \operatorname{Pc}\langle a_1, \ldots, a_d \mid a_1^p = \ldots = a_d^p \rangle$ and define θ by

$$\theta(x_i) = a_i \quad \text{for} \quad i = 1, \dots, d;$$

images of $\theta(x_j)$ with j > d are determined accordingly.

Heiko Dietrich (heiko.dietrich@monash.edu)Computational aspects of finite p-groupsICTS, Bangalore 2016

p-Quotient Algorith

Algo

Algorithm Covering Group

Burnside Problem

Example

Computing a wpcp of $G/P_1(G)$

Example 12

 $G = \langle x_1, \dots, x_6 \mid x_6^{10}, x_1 x_2 x_3, x_2 x_3 x_4, \dots, x_4 x_5 x_6, x_5 x_6 x_1, x_1 x_6 x_2 \rangle$ and p = 2

Write coefficients of abelianised and mod-2 reduced equations as rows of matrix, use row-echelonisation, and determine that solution space has dimension 2:

Modulo $P_1(G)$, this shows that $x_1 = x_5x_6$, $x_2 = x_5$, $x_3 = x_6$, $x_4 = x_5x_6$, and **Burnside's Basis Theorem** implies that $G = \langle x_5, x_6 \rangle$. Lastly, set

$$G/P_1(G) = \Pr(\langle a_1, a_2 \mid a_1^2 = a_2^2 = 1 \rangle),$$

and define $\theta \colon G \to G/P_1(G)$ via $x_5 \mapsto a_1$ and $x_6 \mapsto a_2$. This determines $\theta(x_1) = a_1a_2$, $\theta(x_2) = a_1$, $\theta(x_3) = a_2$, and $\theta(x_4) = a_1a_2$.

Compute wpcp for $G/P_{k+1}(G)$ **from that of** $G/P_k(G)$ Given:

• wpcp of *d*-generator *p*-group $G/P_k(G)$ and epimorphism $\theta: G \to G/P_k(G)$ Want:

• wpcp of $G/P_{k+1}(G)$ and epimorphism $G \to G/P_{k+1}(G)$

In the following:

- $H = G/P_k(G)$ and $K = G/P_{k+1}(G)$ and $Z = P_k(G)/P_{k+1}(G)$
- note that Z is elementary abelian, K-central, and $K/Z \cong H$

Approach: Construct a *covering* H^* of H such that *every* d-generator p-group L with $L/M \cong H$ and $M \leq L$ central elementary abelian, is a quotient of H^* .

Thus, the next steps are:

- define p-cover H^* and determine a pcp of H^* ;
- 2 make this presentation consistent;
- **③** construct K as quotient of H^* by enforcing defining relations of G.

Heiko Dietrich	(heiko.dietrich@monash.edu)	Computat	ional aspects of fini	te p -groups	ICTS, Bangalore 20		
<i>p</i> -	Quotient Algorithm	p-Class	Algorithm	Covering Group	Example	Burnside Problem	

p-covering group: definition

Theorem 13: *p*-covering group

Let H be a d-generator p-group; there is a d-generator p-group H^* with:

- $H^*/M \cong H$ for some central elementary abelian $M \trianglelefteq H^*$;
- if L is a d-generator p-group with $L/Y \cong H$ for some central elementary abelian $Y \leq L$, then L is a quotient of H^* .

The group H^* is unique up to isomorphism.

Proof.

Let H = F/S with F free of rank d. Define $H^* = F/S^*$ with $S^* = [S, F]S^p$. Now S/S^* is elementary abelian p-group, so H^* is (finite) d-generator p-group. Let L be as in the theorem, and let $\psi \colon L \to H$ with kernel Y. Let $\theta \colon F \to H$ with kernel S. Since F is free, θ factors through L, that is, $\theta \colon F \xrightarrow{\varphi} L \xrightarrow{\psi} H$, and so $\varphi(S) \leq \ker \psi = Y$. This implies that $\varphi(S^*) = 1$. In conclusion, φ induces surjective map from $H^* = F/S^*$ onto L. If H^* and \tilde{H}^* are two such covers, then each is an image of the other.

p-covering group: presentation

Given: a wpcp $Pc\langle a_1, \ldots, a_m | S \rangle$ for $H = G/P_k(G) \cong F/S$ and epimorphism $\theta \colon G \to H$ with $\theta(x_i) = a_i$ for $i = 1, \ldots, d$

Want: a wpcp for $H^* \cong F/S^*$ where $S^* = [S, F]S^p$

Recall: each of a_{d+1}, \ldots, a_m occurs as right hand side of one relation in S; write $S = S_{def} \cup S_{nondef}$ with $S_{nondef} = \{s_1, \ldots, s_q\}$.

Theorem 14

Using the previous notation, $H^* = Pc\langle a_1, \ldots, a_m, b_1, \ldots, b_q \mid S^* \rangle$, where

$$\mathcal{S}^* = \mathcal{S}_{\mathsf{def}} \cup \{s_1b_1, \dots, s_qb_q\} \cup \{b_1^p, \dots, b_q^p\}.$$

Note: $M = \langle b_1, \ldots, b_q \rangle \leq H^*$ is elementary abelian, central, and $H^*/M \cong H$.

(see Newman, Nickel, Niemeyer: "Descriptions of groups of prime-power order", 1998)

In practice: fewer new generators are introduced.

 Heiko Dietrich (heiko.dietrich@monash.edu)
 Computational aspects of finite p-groups
 ICTS, Bangalore 2016

 p-Quotient Algorithm
 p-Class
 Algorithm
 Covering Group
 Example
 Burnside Problem

p-covering group: example

Example 15 If $H = Pc\langle a_1, a_2 | a_1^2 = a_2^2 = 1 \rangle \cong C_2 \times C_2$, then $H^* = Pc\langle a_1, a_2, b_1, b_2, b_3 | a_1^2 = b_1, a_2^2 = b_2, [a_1, a_2] = b_3, b_1^2 = b_2^2 = b_3^2 = 1 \rangle$; indeed, $H^* \cong (C_4 \times C_2)$: C_4 , thus we have found a consistent wpcp!

Example 16
If
$$H = Pc\langle a_1, a_2, a_3 \mid a_1^2 = a_3^2 = 1, a_2^2 = a_3, [a_2, a_1] = a_3 \rangle \cong D_8$$
, then
 $H^* = Pc\langle a_1, a_2, a_3, b_1, \dots, b_5 \mid \mathcal{T} \cup \{b_1^2, \dots, b_5^2\} \rangle$ with
 $\mathcal{T} = \{a_1^2 = b_1, a_2^2 = a_3b_2, a_3^2 = b_3, [a_2, a_1] = a_3, [a_3, a_1] = b_4, [a_3, a_2] = b_5\};$
this pcp has power exponents $[2, 2, 2, 2, 2, 2, 2, 2]$.
However, $H^* \cong (C_8 \times C_2) : C_4$, so presentation is **not consistent**!

Next step: make the presentation of H^* consistent.

p-covering group: consistency algorithm

By Theorem 8, the presentation $H^* = \text{Pc}\langle u_1, \ldots, u_{m+q} | S^* \rangle$ with $(u_1, \ldots, u_{m+q}) = (a_1, \ldots, a_m, b_1, \ldots, b_q)$ is consistent if and only if

$$u_{k}(u_{j}u_{i}) = (u_{k}u_{j})u_{i} \qquad (1 \le i < j < k \le m+q)$$

$$(u_{j}^{p})u_{i} = u_{j}^{p-1}(u_{j}u_{i}) \text{ and } u_{j}(u_{i}^{p}) = (u_{j}u_{i})u_{i}^{p-1} \qquad (1 \le i < j \le m+q)$$

$$u_{j}(u_{j}^{p}) = (u_{j}^{p})u_{j} \qquad (1 \le j \le m+q).$$

Consistency Algorithm⁴: find consistent presentation for H^*

- If each pair of words in the above "consistency checks" collects to the same normal word, then the presentation is consistent.
- Otherwise, the quotient of the two different words obtained from one of these conditions is formed and equated to the identity word: this gives a new relation which holds in the group.
- The pcp for H is consistent, so any new relation is an equation in the elementary abelian subgroup M generated by the new generators $\{b_1, \ldots, b_q\}$, which implies that one of these generators is redundant.

Algorithm

p-covering group: consistency algorithm

By Theorem 8, the presentation $H^* = \text{Pc}\langle u_1, \ldots, u_{m+q} | S^* \rangle$ with $(u_1, \ldots, u_{m+q}) = (a_1, \ldots, a_m, b_1, \ldots, b_q)$ is consistent if and only if

 $\begin{aligned} u_k(u_j u_i) &= (u_k u_j) u_i & (1 \le i < j < k \le m+q) \\ (u_j^p) u_i &= u_j^{p-1}(u_j u_i) \text{ and } u_j(u_i^p) &= (u_j u_i) u_i^{p-1} & (1 \le i < j \le m+q) \\ u_j(u_j^p) &= (u_j^p) u_j & (1 \le j \le m+q). \end{aligned}$

Example 17 Consider $G = Pc\langle u_1, u_2, u_3 | u_1^2 = u_2, u_2^2 = u_3, u_3^2 = 1, [u_2, u_1] = u_3 \rangle$. The last test applied to u_1 yields

$$u_1^3 = (u_1^2)u_1 = u_2u_1 = u_1u_2u_3$$
 and $u_1^3 = u_1(u_1^2) = u_1u_2$,

so $u_3 = 1$ in G, hence $G = \Pr(\langle u_1, u_2 \mid u_1^2 = u_2, u_2^2 = 1) \cong C_4$.

Burnside Problem

Example

Construct K from cover H^* of H

So what have we got so far...

- *p*-group $G = F/R = \langle x_1, \dots, x_n \mid \mathcal{R} \rangle$
- consistent wpcp of $H = G/P_k(G) = \operatorname{Pc}\langle a_1, \ldots, a_m \mid S \rangle$
- epimorphism $\theta \colon G \to H$ with $\theta(x_i) = a_i$ for $i = 1, \ldots, d$
- consistent wpcp of cover $H^* = \operatorname{Pc}\langle a_1, \ldots, a_m, b_1, \ldots, b_q \mid \mathcal{S}^* \rangle$; note that $H^*/M \cong H$ where $M = \langle b_1, \ldots, b_q \rangle$

Want:

• consistent wpcp of $K = G/P_{k+1}(G)$ and epimorphism $G \to G/P_{k+1}(G)$

Know:

- $K/Z \cong H$ where $Z = P_k(G)/P_{k+1}(G)$ is elementary abelian, central
- K is quotient of H^*

Idea:

• construct K as quotient of H^* : add relations enforced by G to \mathcal{S}^*

Heiko Dietrich	(heiko.dietrich@monash.edu)	Computati	ional aspects of finit	te p-groups		ICTS, Bangalore 2016
p-	Quotient Algorithm	p-Class	Algorithm	Covering Group	Example	Burnside Problem

Construct K from cover H^* of H

So what have we got so far...

- *p*-group $G = F/R = \langle x_1, \dots, x_n \mid \mathcal{R} \rangle$
- consistent wpcp of $H = G/P_k(G) = \operatorname{Pc}\langle a_1, \ldots, a_m \mid S \rangle$
- epimorphism $\theta: G \to H$ with $\theta(x_i) = a_i$ for $i = 1, \ldots, d$
- consistent pcp of cover $H^* = \operatorname{Pc}\langle a_1, \ldots, a_m, b_1, \ldots, b_q \mid \mathcal{S}^* \rangle$; note that $H^*/M \cong H$ where $M = \langle b_1, \ldots, b_q \rangle$

Enforcing relations of G:

- know that $K = G/P_{k+1}(G)$ is quotient of H^*
- lift $\theta: G \to H$ to $\hat{\theta}: F \to H^*$ such that $\hat{\theta}(x_i) = a_i$ for $i = 1, \dots, d$
- for every relator $r \in \mathcal{R}$ compute $n_r = \hat{\theta}(r) \in M$; let L be the subgroup of M generated by all these n_r
- by von Dyck's Theorem $H^*/L \to K$ and $G \to H^*/L$ are surjective; since K is the largest p-class k + 1 quotient of G, we deduce $K = H^*/L$

Finally: find consistent wpcp of $K = H^*/L$ and get epimorphism $G \to K$

Big example: *p*-quotient algorithm in action Let $G = \langle x, y \mid [[y, x], x] = x^2, \ (xyx)^4, \ x^4, \ y^4, \ (yx)^3y = x \rangle$ and p = 2. First round: • compute $G/P_1(G)$ using abelianisation and row-echelonisation: obtain $H = G/P_1(G) \cong \operatorname{Pc}\langle a_1, a_2 \mid a_1^2 = a_2^2 = 1 \rangle$ and epimorphism $\theta \colon G \to H$, which is defined by $(x, y) \to (a_1, a_2)$. construct covering of H by adding new generators and tails: $H^* = \Pr(a_1, \dots, a_5 \mid a_1^2 = a_3, a_2^2 = a_4, [a_2, a_1] = a_5, a_3^2 = a_4^2 = a_5^2 = 1)$ • the consistency algorithm shows that this presentation is consistent • evaluate relations of G in H*: • $1 = [[a_2, a_1], a_1] = \hat{\theta}([[y, x], x]) = \hat{\theta}(x^2) = a_1^2 = a_3$ forces $a_3 = 1$ • $(xyx)^4, x^4, y^4$ impose no conditions • $a_1a_3 = \hat{\theta}((yx)^3y) = \hat{\theta}(x) = a_1$ also forces $a_3 = 1$ • construct $G/P_2(G)$ as $H^*/\langle a_3 \rangle$; after renaming a_4, a_5 : $G/P_2(G) \cong \Pr(a_1, \dots, a_4 \mid a_1^2 = 1, a_2^2 = a_4, [a_2, a_1] = a_3, a_3^2 = a_4^2 = 1)$ and epimorphism $G \to G/P_2(G)$ defined by $(x, y) \to (a_1, a_2)$. Computational aspects of finite *p*-groups ICTS, Bangalore 2016 eiko Dietrich (heiko.dietrich@monash.edu) Algorithm **Covering Group Big example:** *p*-quotient algorithm in action

 $G/P_2(G) = \operatorname{Pc}\langle a_1, \dots, a_4 \mid a_1^2 = 1, a_2^2 = a_4, [a_2, a_1] = a_3, \ a_3^2 = a_4^2 = 1 \rangle$

Second round:

• construct covering of
$$H = G/P_2(G)$$
 by adding new generators and tails:
 $H^* = \operatorname{Pc}\langle a_1, \dots, a_{12} \mid a_1^2 = a_{12}, a_2^2 = a_4, a_3^2 = a_{11}, a_4^2 = a_{10},$
 $[a_2, a_1] = a_3, [a_3, a_1] = a_5, [a_3, a_2] = a_6, [a_4, a_1] = a_7,$
 $[a_4, a_2] = a_8, [a_4, a_3] = a_9, a_5^2 = \dots = a_{12}^2 = 1\rangle$

- the consistency algorithm shows only the following inconsistencies:
 - $a_2(a_2a_2) = a_2a_4$ and $(a_2a_2)a_2 = a_4a_2 = a_2a_4a_8 \implies a_8 = 1$
 - $a_2(a_1a_1) = a_2a_{12}$ and $(a_2a_1)a_1 = a_1a_2a_3a_1 = \ldots = a_2a_5a_{11}a_{12} \implies a_5a_{11} = 1$
 - $a_2(a_2a_1) = a_1a_2^2a_3^2a_6 = a_1a_4a_6a_{11}$ and $(a_2a_2)a_1 = a_1a_4a_7 \implies a_6a_7a_{11} = 1$
 - $a_3(a_2a_2) = a_3a_4$ and $(a_3a_2)a_2 = a_2a_3a_6a_2 = a_2^2a_3a_6^2 = a_3a_4a_9 \implies a_9 = 1$
- removing redundant gens (and renaming), we obtain the consistent wpcp $H^* = Pc\langle a_1, \ldots, a_8 \mid a_1^2 = a_8, a_2^2 = a_4, a_3^2 = a_7, a_4^2 = a_6, a_5^2 = \ldots = a_8^2 = 1$ $[a_2, a_1] = a_3, [a_3, a_1] = a_7, [a_3, a_2] = a_5a_7, [a_4, a_1] = a_5\rangle$

Big example: *p*-quotient algorithm in action

Still second round:

- $G = \langle x, y \mid [[y, x], x] = x^2, (xyx)^4, x^4, y^4, (yx)^3y = x \rangle$ and p = 2;
- epimorphism $\theta: G \to H$ onto $H = G/P_2(H)$ defined by $(x, y) \to (a_1, a_2)$
- $H^* = \operatorname{Pc}\langle a_1, \dots, a_8 \mid a_1^2 = a_8, a_2^2 = a_4, a_3^2 = a_7, a_4^2 = a_6, a_5^2 = \dots = a_8^2 = 1$ $[a_2, a_1] = a_3, [a_3, a_1] = a_7, [a_3, a_2] = a_5a_7, [a_4, a_1] = a_5\rangle$

Evaluate relations of G in H^* :

- $a_7 = [[a_2, a_1], a_1] = \hat{\theta}([[y, x], x]) = \hat{\theta}(x^2) = a_1^2 = a_8$ forces $a_7 = a_8$
- $(xyx)^4$ forces $a_6 = 1$; x^4 and y^4 impose no condition
- $\hat{\theta}((yx)^3y) = \hat{\theta}(x)$ forces $a_7a_8 = 1$

Now construct $G/P_3(G)$ as $H^*/\langle a_7a_8, a_6 \rangle$; after renaming:

 $G/P_3(G) = \operatorname{Pc}\langle a_1, \dots, a_6 \mid a_1^2 = a_6, a_2^2 = a_4, a_3^2 = a_6, a_4^2 = 1, \ a_5^2 = a_6^2 = 1,$ $[a_2, a_1] = a_3, [a_3, a_1] = a_6, [a_3, a_2] = a_5a_6, [a_4, a_1] = a_5\rangle$

and the epimorphism $G \to G/P_3(G)$ is defined by $(x, y) \to (a_1, a_2)$.

iko Dietrich (heiko.dietrich@monash.edu) Computational aspects of finite p-groups ICTS, Bangalore 2016

p-Quotient Algorithm

lass A

Algorithm Covering Group

Burnside Problem

Big example: *p*-quotient algorithm in action

In conclusion:

We started with

$$G = \langle x, y \mid [[y, x], x] = x^2, (xyx)^4, x^4, y^4, (yx)^3y = x \rangle$$

and computed $G/P_3(G)$ as

$$Pc\langle a_1, \dots, a_6 \mid a_1^2 = a_6, a_2^2 = a_4, a_3^2 = a_6, a_4^2 = a_5^2 = a_6^2 = 1, [a_2, a_1] = a_3, [a_3, a_1] = a_6, [a_3, a_2] = a_5a_6, [a_4, a_1] = a_5 \rangle$$

with epimorphism $G \to G/P_3(G)$ defined by $(x, y) \to (a_1, a_2)$.

One can check that $|G| = |G/P_3(G)| = 2^6$, hence $G \cong G/P_3(G)$.

In particular, we have found a consistent wpcp for G.

In general: if our input group is a finite *p*-group, then the *p*-quotient algorithm constructs a consistent wpcp of that group.

Motivation and Application: Burnside problem

Burnside Problems

- Generalised Burnside Problem (GBP), 1902: Is every finitely generated torsion group finite?
- Burnside Problem (BP), 1902:
 Let B(d, n) be the largest d-generator group with gⁿ = 1 for all g ∈ G. Is this group finite? If so, what is its order?
- **Restricted Burnside Problem** (RBP), ~1940: What is order of largest finite quotient R(d, n) of B(d, n), if it exists?
- Golod-Šafarevič (1964): answer to GBP is "no"; (cf. Ol'shanskii's Tarski monster)
- Various authors: B(d,n) is finite for n = 2, 3, 4, 6, but in no other cases with d > 1 is it known to be finite; is B(2,5) finite?
- Higman-Hall (1956): reduced (RBP) to prime-power n.
- Zel'manov (1990-91): R(d, n) always exists! (Fields medal 1994)

Heiko Dietrich	(heiko.dietrich@monash.edu)	Computational aspects of finite <i>p</i> -groups			ICTS, Bangalore 2016	
<i>p</i> -	Quotient Algorithm	p-Class	Algorithm	Covering Group	Example	Burnside Problem

Motivation and Application: Burnside problem

Burnside groups:

- $B(d,n) = \langle x_1, \dots, x_d \mid g^n = 1 \text{ for all words } g \text{ in } x_1, \dots, x_n \rangle$
- R(d,n) largest finite quotient of B(d,n); exists by Zel'manov

Recall: the p-quotient algorithm computes a consistent wpcp of the largest p-class k quotient (if it exists) of any finitely presented group.

Implementations of the p-quotient algorithm have been used to determine the order and compute pcp's for various of these groups.

Group	Order	Authors
B(3,4)	2^{69}	Bayes, Kautsky & Wamsley (1974)
R(2, 5)	5^{34}	Havas, Wall & Wamsley (1974)
B(4,4)	2^{422}	Alford, Havas & Newman (1975)
R(3,5)	5^{2282}	Vaughan-Lee (1988); Newman & O'Brien (1996)
B(5,4)	2^{2728}	Newman & O'Brien (1996)
R(2,7)	7^{20416}	O'Brien & Vaughan-Lee (2002)

Conclusion Lecture 2

Things we have discussed in the second lecture:

- lower exponent-p series, p-class
- *p*-quotient algorithm
- p-cover H^* (definition, pcp, consistent pcp)
- application: Burnside problems

Heiko Dietrich	(heiko.dietrich@monash.edu)	Computational aspects of finite <i>p</i> -groups			ICTS, Bangalore 2016		
p-Grou	p Generation Algorithm	Descendants	Allowable Subgroups	Isomorphism Problem	Algorithm	Example	

p-group generation

Go to Classification

Conclusion Lecture 2

Things we have discussed in the second lecture:

• the lower exponent-p series of a group G of p-class c is

$$G = P_0(G) > P_1(G) > \ldots > P_c(G) = 1$$

where $P_{i+1}(G) = [G, P_i(G)]P_i(G)^p$; in particular, $P_1(G) = \Phi(G)$

- *p*-quotient algorithm: construct consistent wpcp of largest *p*-class *c* quotient of a finitely presented group (if it exists)
- if H has rank d and $H \cong F/R$ with F free of rank d, then the p-cover H^* is isomorphic to F/R^* where $R^* = [F, R]R^p$
- application: Burnside problems

Today: the *p*-group generation algorithm!

Heiko Dietrich (heiko.dietrich@monash.edu)Computational aspects of finite p-groupsICTS, Bangalore 2016p-Group Generation AlgorithmDescendantsAllowable SubgroupsIsomorphism ProblemAlgorithmExample

p-group generation: descendants

Idea: Constructing new *p*-groups from old ones!

Descendants of *p***-groups**

Let G be a d-generator p-group of p-class c. A **descendant** of G is a d-generator p-group H with $H/P_c(H) \cong G$; it is an **immediate descendant** if H has p-class c + 1, that is, $P_c(H) > P_{c+1}(H) = 1$.

Example 18

The group $G = C_2 \times C_2$ has 2-class c = 1.

The 2-class of $D_8 = \langle x_1, x_2, x_3 | x_1^2, x_2^2 = x_3, x_3^2, [x_2, x_1] = x_3 \rangle$ is 2. Since $D_8/P_1(D_8) \cong G$, the group D_8 is an immediate descendant of G.

The group D_{16} has 2-class 3 and satisfies $D_{16}/P_1(D_{16}) \cong C_2 \times C_2$. Thus D_{16} is a descendant of G, but not an immediate descendant.

Every p-group K of p-class c > 1 is an immediate descendant of $K/P_{c-1}(K)$; if c = 1, then $K \cong C_p^d$ is elementary abelian.

p-group generation: *p*-covering

Given: a d-generator p-group G of p-class c.

Want: list of all immediate descendants *H* of *G* (up to isomorphism)

Fact: each $H/P_c(H) \cong G$ and $P_c(H)$ is *H*-central elementary abelian.

Recall Theorem 13: If H is a d-generator p-group with $H/Z \cong G$ for some central elementary abelian $Z \leq H$, then H is a quotient of the p-cover G^* .

Theorem 19 Every immediate descendant of G is a quotient of the *p*-cover G^* .

In the following we discuss the p-group generation algorithm:

p-group generation algorithm
 Input: a *p*-group *G* and description of its automorphism group
 Output: wpcp's of all immediate descendants of *G*, up to isomorphism, and a description of their automorphism groups

Descriptions of the algorithm in the literature: Newman (1977), O'Brien (1999)

p-group generation: allowable subgroups

In the following: G = F/R with *p*-class *c*, and $G^* = F/R^*$ with $R^* = [R, F]R^p$. **Problem:** What quotients of G^* are immediate descendants of *G*?

Definition

- The *p*-multiplicator of G is the kernel of $G^* \to G$, that is, R/R^* .
- The nucleus of G is $P_c(G^*)$; note that $P_c(G^*) \leq R/R^*$.
- If H is an immediate descendant, then there is an epi $G^* \to H$ whose kernel lies in R/R^* . An **allowable subgroup** is a subgroup $Z < R/R^*$ such that G^*/Z is an immediate descendant of G.

The next lemma characterises allowable subgroups:

Lemma 20

A subgroup $Z < R/R^*$ is allowable if and only if $ZP_c(G^*) = R/R^*$.

Thus: $Z < R/R^*$ is allowable if and only if it supplements the nucleus.

p-group generation: allowable subgroups

Recall: G = F/R with *p*-class *c*, and $G^* = F/R^*$ with $R^* = [R, F]R^p$.

Lemma 20

A subgroup $Z < R/R^*$ is allowable if and only if $ZP_c(G^*) = R/R^*$.

Proof.

If $Z = M/R^*$ is allowable, then F/M is an immediate descendant, and so $G \cong (F/M)/(P_c(F)M/M)$. We also know that $G = F/R \cong (F/M)/(R/M)$ by the isomorphism theorem. Since $P_c(G) = P_c(F)R/R = 1$, we have $P_c(F)M \leq R$. Together, it follows that $R = P_c(F)M$, and so $R/R^* = P_c(G^*)Z$, as claimed.

Conversely, if $Z = M/R^*$ satisfies $R/R^* = ZP_c(G^*) = MP_c(F)/R^*$, then $R = MP_c(F)$; factoring out M yields $R/M = P_c(F)M/M$. This shows that $H = G^*/Z = F/M$ satisfies $P_c(H) = P_c(F)M/M = R/M$, so $H/P_c(H) = F/R = G$ and H is immed. desc. since $P_c(H) > P_{c+1}(H) = 1$.

 Heiko Dietrich (heiko.dietrich@monash.edu)
 Computational aspects of finite p-groups
 ICTS, Bangalore 2016

 p-Group Generation Algorithm
 Descendants
 Allowable Subgroups
 Isomorphism Problem
 Algorithm
 Example

p-group generation: allowable subgroups

Example 21

The group $G = D_{16}$ has p-class c = 3 and 2-covering

$G^* = \operatorname{Pc}\langle a_1, \ldots, a_7 \rangle$	$a_1^2 = a_6, \ a_2^2 = a_3 a_4 a_7, \ a_3^2 = a_4 a_5, \ a_4^2 = a_5,$
	$[a_2, a_1] = a_3, \ [a_3, a_1] = a_4, \ [a_4, a_1] = a_5,$
	$a_5^2 = a_6^2 = a_7^2 = 1\rangle.$

The multiplicator is $\langle a_5, a_6, a_7 \rangle \cong C_2^3$; the nucleus is $P_c(G^*) = \langle a_5 \rangle$.

The subgroups $\langle a_6, a_7 \rangle$, $\langle a_5a_6, a_7 \rangle$, $\langle a_6, a_5a_7 \rangle$ are allowable and the corresponding immediate descendants have order 32.

The subgroup $\langle a_5 a_6, a_5 a_7 \rangle$ is also allowable, but the resulting quotient is isomorphic to the quotient of G^* by $\langle a_6, a_5 a_7 \rangle$.

Considering the factor groups of G^* by all allowable subgroups, a *complete* list of immediate descendants is obtained; this list usually contains isomorphic groups.

p-group generation: isomorphism problem

Recall: G = F/R with *p*-cover $G^* = F/R^*$ and multiplicator R/R^* .

Equivalence of allowable subgroups Two allowable subgroups U/R^* and V/R^* are equivalent if the corresponding

immediate descendants F/U and F/V are isomorphic.

This definition of "equivalence" is useful

 \dots only because the equivalence relation can be given a different characterisation by using the automorphism group of G.

p-group generation: isomorphism problem

Extended automorphism

Let $\alpha \in \operatorname{Aut}(G)$; suppose G = F/R is generated by a_1, a_2, \ldots, a_d . For $i = 1, \ldots, d$, let $x_i, y_i \in F$ such that $a_i = x_i R$ and $\alpha(a_i) = y_i R$ for all i. Define $\alpha^* \colon G^* \to G^*$ by $\alpha^*(x_i R^*) = y_i R^*$ for all i.

Lemma 22

If $\alpha \in Aut(G)$, then $\alpha^* \in Aut(G^*)$ is an **extended automorphism**. It is not uniquely defined by α , but its restriction to R/R^* is.

Proof [Sketch].

First show that α^* is a well-defined homomorphism; let $g = w(x_1, \ldots, x_d) \in F$: If $g \in R$, then $1R = \alpha(gR) = w(y_1, \ldots, y_d)R$, so $w(y_1, \ldots, y_d) \in R$. So if $g \in R^*$, then $w(y_1, \ldots, y_d) \in R^*$; recall $R^* = [F, R]R^p$. The hom α^* is surjective: $G^* = \langle y_1 R^*, \ldots, y_d R^* \rangle$ since $R/R^* \leq \Phi(G^*)$.

Two extensions of α differ only by elements in R/R^* , and words in R are products of p-th powers and commutators. Since R/R^* is elementary abelian and central, the restriction of α^* to R/R^* is uniquely defined by α .

p-group generation: isomorphism problem

Lemma 23

Let G = F/R be as before, and let U/R^* and V/R^* be allowable subgroups. Then $F/U \cong F/V$ if and only if $\alpha^*(U/R^*) = V/R^*$ for some $\alpha \in \operatorname{Aut}(G)$.

Proof [Sketch].

" \Rightarrow ". Let $\varphi \colon F/U \to F/V$ be an isomorphism. Since F/U is an immed. desc., $(F/U)/P_c(F/U) = G$, and so $P_c(F/U) = R/U$; similarly, $P_c(F/V) = R/V$, and so $\varphi(R/U) = R/V$. Thus φ induces $\alpha \in \operatorname{Aut}(G)$ with extension $\alpha^* \in \operatorname{Aut}(G^*)$. Now we show that $\alpha^*(U/R^*) = V/R^*$: if $g = w(x_1, \ldots, x_d) \in U$, then

$$1V = \varphi(gU) = w(\varphi(x_1U), \dots, \varphi(x_dU)) = w(y_1V, \dots, y_dV) = w(y_1, \dots, y_d)V,$$

which implies $\alpha^*(gR^*) = w(y_1, \ldots, y_d)R^* \in V/R^*$, and so $\alpha^*(U/R^*) = V/R^*$.

" \Leftarrow ". If H is a group, $N \leq H$, and $\gamma \in \operatorname{Aut}(H)$, then $H/N \cong H/\gamma(N)$. This shows that if $\alpha^* \in \operatorname{Aut}(G^*)$ maps U/R^* to V/R^* , then $F/U \cong F/V$.

Via α^* , every $\alpha \in Aut(G)$ yields a unique permutation $\pi(\alpha)$ of allowable subgrps.

 Heiko Dietrich (heiko.dietrich@monash.edu)
 Computational aspects of finite p-groups
 ICTS, Bangalore 2016

 p-Group Generation Algorithm
 Descendants
 Allowable Subgroups
 Isomorphism Problem
 Algorithm
 Example

p-group generation: automorphisms

Given: G = F/R and immediate desc. H = F/M for some allowable M/R^*

Want: automorphisms of H, that is, *isomorphisms* $F/M \to F/M$

Recall: every $\alpha \in Aut(G)$ yields a permutation $\pi(\alpha)$ of allowable subgrps.

Let Σ be the stabiliser of M/R^* under the action of $\operatorname{Aut}(G),$ that is,

 $\Sigma = \langle \zeta \in \operatorname{Aut}(G) \mid \pi(\zeta) \text{ stabilises } M/R^* \rangle.$

Use $\boldsymbol{\Sigma}$ to compute

 $S = \langle \zeta^* |_{F/M} \mid \zeta \in \Sigma \rangle \leq \operatorname{Aut}(H),$

and determine a generating set for

$$T = \langle \beta \in \mathsf{Aut}(H) \mid \beta \mid_G = \mathsf{id}_G \rangle.$$

Theorem 24

Using the previous notation, $Aut(H) = \langle S, T, Inn(H) \rangle$.

(see O'Brien, 1999)

ICTS, Bangalore 2010

Example

Algorithm

p-group generation: the algorithm

p-group-generation(G, A, s)group G = F/R of order p^n , its automorphism group A, integer $s \in \mathbb{N}$ Input: **Output:** immediate descendants of G, up to isomorphism, of order p^{n+s} , and their automorphism groups 1 construct consistent wpcp of covering $G^* = F/R^*$ 2 for each generator α of A do 3 compute extension α^* 4 compute permutation $\pi(\alpha)$ of allowable subgroups of index p^s in R/R^* 5 compute orbits of these allowable subgroups under the action of all $\pi(\alpha)$ for each orbit representative $Z = M/R^*$ do 6 compute a wpcp of the immediate descendant $H = G^*/Z \cong F/M$ 7 compute generators of the automorphism group of H8

p-group generation: example

Consider $G = \operatorname{Pc}\langle a_1, a_2 \mid a_1^2 = a_2^2 = 1 \rangle$ with 2-covering

$$G^* = \Pr\langle a_1, \dots, a_5 \mid a_1^2 = a_4, a_2^2 = a_5, [a_1, a_2] = a_3, a_3^2 = a_4^2 = a_5^2 = 1 \rangle.$$

Computational aspects of finite *p*-group

Allowable Subgroups

Isomorphism Problem

The multiplicator and nucleus coincide: $M = \langle a_3, a_4, a_5 \rangle = P_1(G^*)$.

Descendants

Thus: every proper subgroup of M is allowable.

Note that $\operatorname{Aut}(G) \cong \operatorname{GL}_2(2)$, with generators and extensions $\alpha_1 \colon (a_1, a_2) \mapsto (a_1 a_2, a_2) \quad \alpha_1^* \colon (a_1, a_2, a_3, a_4, a_5) \mapsto (a_1 a_2, a_2, a_3, a_3 a_4 a_5, a_5)$ $\alpha_2 \colon (a_1, a_2) \mapsto (a_2, a_1) \quad \alpha_2^* \colon (a_1, a_2, a_3, a_4, a_5) \mapsto (a_2, a_1, a_3, a_5, a_4).$

For example, observe that

leiko Dietrich

$$\alpha_1^*(a_3) = \alpha_1^*([a_1, a_2]) = [a_1a_2, a_2] = a_3$$

$$\alpha_1^*(a_4) = \alpha_1^*(a_1^2) = (a_1a_2)^2 = a_1^2a_2^2a_3 = a_3a_4a_5$$

$$\alpha_1^*(a_5) = \alpha_1^*(a_2^2) = a_2^2 = a_5$$

p-group generation: example

Consider $G = \operatorname{Pc}\langle a_1, a_2 \mid a_1^2 = a_2^2 = 1 \rangle$ with 2-covering

$$G^* = \Pr\langle a_1, \dots, a_5 \mid a_1^2 = a_4, \ a_2^2 = a_5, \ [a_1, a_2] = a_3, \ a_3^2 = a_4^2 = a_5^2 = 1 \rangle.$$

The multiplicator and nucleus coincide: $M = \langle a_3, a_4, a_5 \rangle = P_1(G^*)$.

Thus: every proper subgroup of M is allowable.

Note that $\operatorname{Aut}(G) \cong \operatorname{GL}_2(2)$, with generators and extensions $\alpha_1 : (a_1, a_2) \mapsto (a_1 a_2, a_2) \quad \alpha_1^* : (a_1, a_2, a_3, a_4, a_5) \mapsto (a_1 a_2, a_2, a_3, a_3 a_4 a_5, a_5)$ $\alpha_2 : (a_1, a_2) \mapsto (a_2, a_1) \quad \alpha_2^* : (a_1, a_2, a_3, a_4, a_5) \mapsto (a_2, a_1, a_3, a_5, a_4).$

Immediate descendants of $G = C_2 \times C_2$ of order 8: There are 7 allowable subgroups of index 2 in M (that is, of rank 2), namely $\langle a_4, a_5 \rangle$, $\langle a_4, a_3 a_5 \rangle$, $\langle a_3 a_4, a_5 \rangle$, $\langle a_3, a_4 \rangle$, $\langle a_3 a_4, a_3 a_5 \rangle$

There are 3 orbits of allowable subgroups induced by α_1^* and α_2^* : $\{\langle a_4, a_5 \rangle, \langle a_4, a_3 a_5 \rangle, \langle a_3 a_4, a_5 \rangle\}, \{\langle a_3 a_4, a_3 a_5 \rangle\}, \{\langle a_3, a_5 \rangle, \langle a_3, a_4 a_5 \rangle, \langle a_3, a_4 \rangle\}$

Computational aspects of finite *p*-groups

p-Group Generation Algorithm

leiko Dietrich (heiko.dietrich@monash.edu)

Allowable Subgroups Isomorphism Problem

Example

Algorithm

p-group generation: example

Immediate descendants of $G = C_2 \times C_2$ of order 8 Recall that

Descendants

$$G^* = \Pr(\langle a_1, \dots, a_5 \mid a_1^2 = a_4, a_2^2 = a_5, [a_1, a_2] = a_3, a_3^2 = a_4^2 = a_5^2 = 1 \rangle$$

and allowable subgroups of rank 2 are

 $\{\langle a_4, a_5 \rangle, \langle a_4, a_3 a_5 \rangle, \langle a_3 a_4, a_5 \rangle\}, \{\langle a_3 a_4, a_3 a_5 \rangle\}, \{\langle a_3, a_5 \rangle, \langle a_3, a_4 a_5 \rangle, \langle a_3, a_4 \rangle\}.$

Choose one rep from each orbit and factor it from G^* to obtain immediate descendants:

$$\begin{aligned} &\operatorname{Pc}\langle a_1, a_2, a_3 & | & a_1^2 = a_2^2 = a_3^2, \ [a_2, a_1] = a_3 \rangle \cong D_8 \\ &\operatorname{Pc}\langle a_1, a_2, a_3 & | & a_1^2 = a_3, \ a_2^2 = a_3, \ a_3^2 = 1, \ [a_2, a_1] = a_3 \rangle \cong Q_8 \\ &\operatorname{Pc}\langle a_1, a_2, a_4 & | & a_1^2 = a_4, \ a_2^2 = a_4^2 = 1 \rangle \cong C_2 \times C_4 \end{aligned}$$

Algorithm Example

p-group generation: example

Immediate descendants of $G = C_2 \times C_2$ of order 16 Recall that

$$G^* = \Pr\langle a_1, \dots, a_5 \mid a_1^2 = a_4, \ a_2^2 = a_5, \ [a_1, a_2] = a_3, \ a_3^2 = a_4^2 = a_5^2 = 1 \rangle.$$

Allowable subgroups of index 4 are $\langle a_3 \rangle$, $\langle a_3^{\delta} a_4^{\gamma} a_5 \rangle$, $\langle a_3^{\zeta} a_4 \rangle$, with $\delta, \gamma, \zeta \in \{0, 1\}$. The orbits induced by α_1^* and α_2^* are

 $\{\langle a_3 \rangle\}, \ \{\langle a_5 \rangle, \langle a_3 a_4 a_5 \rangle, \langle a_4 \rangle\}, \ \{\langle a_4 a_5 \rangle, \langle a_3 a_5 \rangle, \langle a_3 a_4 \rangle\}.$

Choose one rep from each orbit to obtain 3 immediate descendants of order 16. Get $C_4 \times C_4$ and $C_2 \ltimes (C_2 \times C_4)$ and $C_4 \ltimes C_4$, for example,

$$G^*/\langle a_3 \rangle = \operatorname{Pc}\langle a_1, a_2, a_4, a_5 \mid a_1^2 = a_4, a_2^2 = a_5, a_4^2 = a_5^2 = 1 \rangle \cong C_4 \times C_4.$$

Immediate descendants of $G = C_2 \times C_2$ **of order 32** There is one immediate descendant of order 2^5 , namely G^* .

 Heiko Dietrich (heiko.dietrich@monash.edu)
 Computational aspects of finite p-groups
 ICTS, Bangalore 2016

 p-Group Generation Algorithm
 Descendants
 Allowable Subgroups
 Isomorphism Problem
 Algorithm
 Example

p-group generation: practical issues

Central problem: number of allowable subspaces (and size of orbits)

Example: The immediate descendants of $G = C_p^d$ of order p^{d+s} have *p*-class 2. For this group, $M = R/R^* = P_1(G^*)$ has rank m = d(d+1)/2; and each of the $O(p^{(m-s)s})$ subspaces of dim m-s is allowable.

Approach: exploit characteristic structure. Each $\alpha \in \operatorname{Aut}(G)$ acts on $M \leq G^*$ via $\alpha^* \in \operatorname{Aut}(G^*)$; so M is $\operatorname{Aut}(G)$ -module. In the example, $M = P_1(G^*) = (G^*)^2(G^*)'$ is a characteristic decomposition.

In general, identify characteristic submodules, then process chain of submodules.

More comments on practical issues: see O'Brien (1999)

 \blacktriangleright Go to *p*-Group Generation

Classifying *p*-groups

· do to p-droup deneration			
► Go to Isomorphisms			
Heiko Dietrich (heiko.dietrich@monash.edu)	Computational aspects of finite	e p-groups	ICTS, Bangalore 2016
Classification by Order	GNU	Small <i>p</i> -Groups	PORC Conjecture

GNU: group number

How many groups of order p^n exist?

The number gnu(n) of groups of order n (up to isomorphism) has been studied in detail⁵; we recall a few bounds:

- Pyber (1993): $gnu(n) \le n^{(2/27+o(1))\mu(n)^2}$, where $\mu(n)$ is largest exponent in the prime-power factorisation of n. Idea: count choices for Sylow subgroups, Fitting subgroup, quotients, extensions,...
- Higman (1960): $gnu(p^n) \ge p^{2/27(n^3-6n^2)}$ Idea: count groups of *p*-class 2
- Sims (1965), Newman & Seeley (2007): $gnu(p^n) \le p^{2n^3/27 + O(n^{5/3})}$ Idea: enumerate presentations which define groups of order p^n Trivial bound: $gnu(p^n) \le p^{(n^3-n)/6}$

In conclusion: $p^{(2/27)n^3 - O(n^2)} \le \operatorname{gnu}(p^n) \le p^{(2/27)n^3 + O(n^{5/3})}$ as $n \to \infty$.

Heiko Dietrich (heiko.dietrich@monash.edu) Computational aspects of finite p-groups

⁵Blackburn, Neuman, Venkataraman "Enumeration of finite groups", 2007

GNU: some 2-groups

Besche, Eick & O'Brien (2001) used 2-group generation:

order	#	order	#
1	1	128	2,328
2	1	256	56,092
4	2	512	10,494,213
8	5	1024	49,487,365,422
16	14	2048	>1,774,274,116,992,170
32	51		
64	267		

Number of groups of order ≤ 2000 :	49,910,529,484
Number of groups of order 2^{10} :	49,487,365,422
Number of groups of order 2^{10} and class 2:	48,803,495,722

Folklore Conjecture

Almost all groups are 2-groups of 2-class 2.

 Heiko Dietrich (heiko.dietrich@monash.edu)
 Computational aspects of finite p-groups
 ICTS, Bangalore 2016

Classification by Order

GNU

Small p-Groups

PORC Conjecture

GNU: *p*-groups of small order

Number of groups of order p^k , for k = 1, 2, ..., 6:

$\# \setminus p$	2	3	≥ 5
p	1	1	1
p^2	2	2	2
p^3	5	5	5
p^4	14	15	15
p^5	51	67	X
p^6	267	504	Y

where

$$X = 2p + 61 + 2 \gcd(p - 1, 3) + \gcd(p - 1, 4)$$

$$Y = 3p^2 + 39p + 344 + 24 \gcd(p - 1, 3) + 11 \gcd(p - 1, 4) + 2 \gcd(p - 1, 5)$$

Order dividing p^4 : Cole, Glover, Hölder, Young (all \sim 1893)

Order p^5 : Bagnera, Miller, de Séguier, James (1898-1980)

Order p^6 : many faulty classifications; eventually Newman, O'Brien, Vaughan-Lee (2004)

GNU: *p*-groups of small order

Number of groups of order p^7 : O'Brien & Vaughan-Lee (2005) computed

$$\# \setminus p$$
 2
 3
 5
 ≥ 7
 p^7
 2,328
 9,310
 34,297
 Z

where

$$Z = 3p^{5} + 12p^{4} + 44p^{3} + 170p^{2} + 707p + 2455$$

+(4p^{2} + 44p + 291) gcd(p - 1, 3) + (p^{2} + 19p + 135) gcd(p - 1, 4)
+(3p + 31) gcd(p - 1, 5) + 4 gcd(p - 1, 7) + 5 gcd(p - 1, 8) + gcd(p - 1, 9)

Approach for n = 5, 6, 7**:**

- For p < n use *p*-group generation.
- For p ≥ n use Baker-Campbell-Hausdorff formula and Lazard correspondence between category of nilpotent Lie rings of order pⁿ and category of p-groups of order pⁿ. Use analogue of p-group generation algorithm to classify the Lie rings.

Heiko Dietrich (heiko.dietrich@monash.edu)	Computational as	spects of finite p -groups	ICTS, Bangalore 2016
Classification by Order	GNU	Small p-Group	PORC Conjecture
GNU: PORC cor	jecture ⁶		
PORC Conjecture (Higma For <i>n</i> fixed, $gnu(p^n)$ is Poly	· · · · · · · · · · · · · · · · · · ·	sidue Classes.	

That is, there exists $m \in \mathbb{N}$ and polynomials $f_0, f_1, \ldots, f_{m-1}$ such that

$$\operatorname{gnu}(p^n) = f_{p \bmod m}(n).$$

Higman (1960): # groups of order p^n and p-class 2 is PORC.

Evseev (2008): # groups of order p^n whose Frattini subgroup is central is PORC.

Vaughan-Lee (2015): # groups of order p^8 and exponent p is PORC.

⁶For a survey see Vaughan-Lee "Graham Higman's PORC Conjecture" (2012)

Conclusion Lecture 3

Things we have discussed in the third lecture:

- (immediate) descendants
- *p*-group generation algorithm
- *p*-cover, nucleus, multiplicator, allowable subgroups, extended auts
- automorphism groups of immediate descendants
- the group number gnu for group order p^5, p^6, p^7
- PORC conjecture

Heiko Dietrich	(heiko.dietrich@monash.edu)	Computational aspects of finite <i>p</i> -groups	ICTS, Bangalore 2016
Is	omorphism Testing	Standard Presentations	Example

Isomorphism testing

▶ Go to Classifications

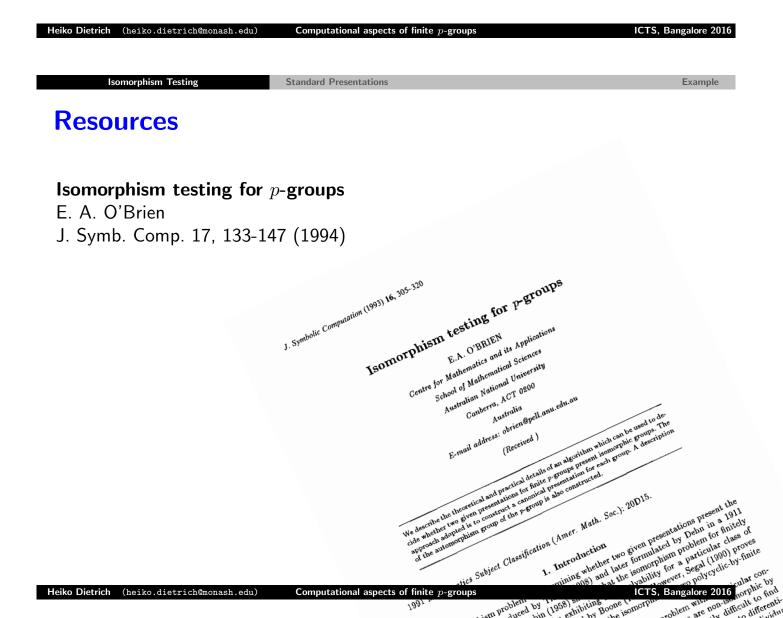
• Go to Automorphisms

Example

Conclusion Lecture 3

Things we have discussed in the third lecture:

- (immediate) descendants
- *p*-group generation algorithm
- $\bullet\ p$ -cover, nucleus, multiplicator, allowable subgroups, extended auts
- automorphism groups of immediate descendants
- $\bullet\,$ the group number gnu for group order p^5, p^6, p^7
- PORC conjecture



Standard Presentations

Problem: Decide whether two *p*-groups are isomorphic.

Standard presentation

For a *p*-group *G* use methods from the *p*-quotient and *p*-group generation algorithms to construct a **standard pcp** (std-pcp) for *G*, such that $G \cong H$ if and only if *G* and *H* have the same std-pcp.

Example: For each $j = 1, \ldots, p-1$ the presentation

$$\operatorname{Pc}\langle a_1, a_2 \mid a_1^p = a_2^j, \ a_2^p = 1 \rangle$$

is a wpcp describing C_{p^2} ; as a std-pcp one could choose

$$\Pr\langle a_1, a_2 \mid a_1^p = a_2, \ a_2^p = 1 \rangle.$$

Computational aspects of finite *p*-groups

Similarly, a std-pcp for C_p^d is $Pc\langle a_1, \ldots, a_d \mid a_1^p = \ldots = a_d^p = 1 \rangle$.

. . . .

(heiko.dietrich@monash.edu)

leiko Dietrich

Standard Presentations

Isomorphism test: computing std-pcp's

Let G be d-generator p-group of p-class c. Std-pcp of $G/P_1(G)$ is $Pc\langle a_1, \ldots, a_d \mid a_1^p = \ldots = a_d^p = 1 \rangle$.

Suppose $H \cong G/P_k(G)$ with k < c is defined by std-pcp; have $\theta \colon G \to G/P_k(G)$.

Find std-pcp of $G/P_{k+1}(G)$ using *p*-group generation:

The *p*-group generation algorithm constructs immediate descendants of *H*. Among these immediate descendants is $K \cong G/P_{k+1}(G)$. Proceed as follows:

- let $H \cong F/R$ (defined by std-pcp) and $H^* \cong F/R^*$;
- evaluate relations in H^* to get allowable M/R^* with $F/M \cong G/P_{k+1}(G)$;
- recall: α ∈ Aut(H) acts as α* ∈ Aut(H*) on allowable subgroups; two allowable U/R* and V/R* are in same Aut(H)-orbit iff F/U ≅ F/V; the choice of orbit rep determines the pcp obtained, and two elements from the same orbit determine different pcp's for isomorphic groups;
- associate with each allowable subgroup a unique *label*: a positive integer which runs from one to the number of allowable subgroups;
- let \overline{M}/R^* be the element in the Aut(H)-orbit of M/R^* with label 1.

Now $K = F/\overline{M}$ is isomorphic to $G/P_{k+1}(G)$; the pcp defining K is "standard".

Example

ICTS, Bangalore 2016

Example

Isomorphism test: example of std-pcp

The group

$$G = \langle x, y \mid (xyx)^3, x^{27}, y^{27}, [x, y]^3, (xy)^{27}, [y, x^3], [y^3, x] \rangle;$$

has order 3^7 , rank 2, and 3-class 3; let S_1 be the set of relators.

- $G/P_1(G)$ has std-pcp $H = \operatorname{Pc}\langle a_1, a_2 \mid a_1^3 = a_2^3 = 1 \rangle$, and we have an epimorphism $\theta \colon G \to H$ with $x, y \mapsto a_1, a_2$.
- $\bullet\,$ use the $p\mbox{-}quotient$ algorithm to construct covering

$$H^* = \Pr\langle a_1, \dots, a_5 \mid [a_2, a_1] = a_3, \ a_1^3 = a_4, \ a_2^3 = a_5, \ a_3^3 = a_4^3 = a_5^3 = 1 \rangle.$$

• evaluate S_1 in H^* via $\hat{\theta}$ to determine the allowable subgroup $U/R^* = \langle a_4^2 a_5 \rangle$ which must be factored from H^* to obtain $G/P_2(G)$, that is, F/U is isomorphic to $G/P_2(G)$ with wpcp

$$\Pr(a_1, \dots, a_4 \mid [a_2, a_1] = a_3, \ a_1^3 = a_2^3 = a_4, \ a_3^3 = a_4^3 = 1).$$

 Heiko Dietrich
 (heiko.dietrich@monash.edu)
 Computational aspects of finite p-groups

Isomorphism Testing

Standard Presentations

$$\begin{array}{lll} H &=& \operatorname{Pc}\langle a_1, a_2 \mid a_1^3 = a_2^3 = 1 \rangle; \\ H^* &=& \operatorname{Pc}\langle a_1, \dots, a_5 \mid [a_2, a_1] = a_3, \ a_1^3 = a_4, \ a_2^3 = a_5, \ a_3^3 = a_4^3 = a_5^3 = 1 \rangle, \\ & \text{with 3-multiplicator } M = \langle a_3, a_4, a_5 \rangle. \end{array}$$

• A generating set for the automorphism group $Aut(H) \cong GL_2(3)$ is

Note that

$$\alpha_1^*(a_3) = \alpha_1^*([a_2, a_1]) = [a_1^2 a_2^2, a_1 a_2^2] = \dots = a_3$$

$$\alpha_1^*(a_4) = \alpha_1^*(a_1^3) = (a_1 a_2^2)^3 = \dots = a_4 a_5^2$$

$$\alpha_1^*(a_5) = \alpha_1^*(a_2^3) = (a_1^2 a_2^2)^3 = \dots = a_4^2 a_5^2$$

so the matrices representing the action of α_i^\ast on M are

$$\begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 2 \\ 0 & 2 & 2 \end{pmatrix}, \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 2 & 1 \end{pmatrix}, \begin{pmatrix} 2 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 1 \end{pmatrix}.$$

Example

ICTS, Bangalore 2016

Example

Isomorphism test: example of std-pcp

Recall that

$$H^* = \Pr\langle a_1, \dots, a_5 \mid [a_2, a_1] = a_3, a_1^3 = a_4, a_2^3 = a_5, a_3^3 = a_4^3 = a_5^3 = 1 \rangle,$$

and $G/P_2(G) \cong F/U$ for the subspace $U/R^* = \langle a_4 a_5^2 \rangle$, which is $\langle (0,1,2) \rangle$

• The Aut(H)-orbit containing U/R^* is

$$\{\langle a_5 \rangle, \langle a_4 a_5 \rangle, \langle a_4^2 a_5 \rangle, \langle a_4 \rangle\}.$$

- The orbit rep with label 1 is $\ldots \overline{U}/R^* = \langle a_5 \rangle$.
- Factor H^* by $\langle a_5 \rangle$ to obtain the std-pcp for $G/P_2(G)$ as

$$K = \Pr(a_1, \dots, a_4 \mid [a_2, a_1] = a_3, \ a_1^3 = a_4, \ a_1^3 = \dots = a_4^3 = 1).$$

Recall that U/R^* was found by evaluating the relations S_1 of G. But: for the std-pcp we factored out $\overline{U}/R^* = \delta(U/R^*)$ for some $\delta \in \operatorname{Aut}(H^*)$. For the next iteration we need to modify the set of relations S_1 accordingly.

Heiko Dietrich	(heiko.dietrich@monash.edu)	Computational aspects of finite <i>p</i> -groups	ICTS, Bangalore 2016

Isomorphism test: example of std-pcp

Standard Presentations

• An extended automorphism which maps $U/R^* = \langle a_4 a_5^2 \rangle$ to $\bar{U}/R^* = \langle a_5 \rangle$ is

• Apply δ to $\mathcal{S}_1=\{(xyx)^3,x^{27},y^{27},[x,y]^3,\ldots\}$ to obtain

$$\mathcal{S}_2 = \{ (xy[y,x]x^3xy^2xy[y,x]x^3)^3, \ (xy[y,x]x^3)^{27}, \ (xy^2)^{27}, \ldots \};$$

it follows that $G = \langle x, y | S_1 \rangle \cong \langle x, y | S_2 \rangle$, see O'Brien 1994.

• Now iterate with $G \cong \langle x, y | S_2 \rangle$ and the std-pcp of $K \cong G/P_2(G)$ to compute the std-pcp of $G/P_3(G) \cong G$.

Practical issues: need *complete orbit* to identify element with smallest label. One idea is to exploit the characteristic structure of the *p*-multiplicator (as before).

Note: The std-pcp is only "standard" because it has been computed by some deterministic rule. Std-pcps are a very efficient tool to partition sets of groups into isomorphism classes.

► Go to Isomorphisms

Automorphism groups

► Go to Coclass			
eiko Dietrich (heiko.dietrich@monash.ed Automorphism Groups	a) Computational aspects of Algorithm	f finite <i>p</i> -groups Example	ICTS, Bangalore 2 Stabiliser Probler
Resources	Mashann	Lampe	
Constructing automor	nhism grouns of r	groups	
B. Eick, C. R. Leedham-	Green, E. A. O'Bri		
Comm. Algebra 30, 227	1-2295 (2002)	COMA	
		"UNICATIONS	IN ALGEBRA, 30(5), 2271-2295 (2002)
			~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
		CONSTRUCTING GROUTING	AUTOMORPHISM F. P-GROUPS Witen-Green, 2
		Bertina Elect	AUTOMORPE
		Berting Elect, 1 C. R. Li ¹ Institut für Geometrie, Universi ² School ² AL OB ²	eedhaan-Green
		School of the second se	indon,
	ß	@man wersity	acuk Auckland,
	esg each Vario	We nessent an algorithm to construct the automos designed before the around the automos of finite p-groups	
eiko Dietrich (heiko.dietrich@monash.ed	u) Computational aspects of	auents central series of the nethod works dutonos is ductive step is a stabilitier con the autonos approaches designed to construct the autonos finite on promote the series of the s	ICTS, Bangalore 2

a very difficut fini

. INTROD

his computer of the

# **Computing automorphism groups**

Let G be a d-generator p-group with lower p-central series

$$G = P_0(G) > P_1(G) > \ldots > P_c(G) = 1$$

In the following write  $G_i = G/P_i(G)$ .

We want to construct Aut(G).

#### Approach

Compute  $Aut(G) = Aut(G_c)$  by induction on that series:

- $\operatorname{Aut}(G_1) = \operatorname{Aut}(C_p^d) \cong \operatorname{GL}_d(q)$
- construct  $\operatorname{Aut}(G_{k+1})$  from  $\operatorname{Aut}(G_k)$ .

For the induction step use ideas from p-group generation.



### **Computing automorphism groups**

Let  $H = G_k$  and  $K = G_{k+1}$ ; given Aut(H), compute Aut(K).

#### **Recall from** *p***-group generation:**

- compute  $H^* = F/R^*$  and the multiplicator  $M = R/R^*$ ;
- determine allowable subgroup  $U/R^* \leq M$  defining K, that is,  $K \cong F/U$ ;
- each  $\alpha \in Aut(H)$  extends to  $\alpha^* \in Aut(H^*)$  which leaves M invariant; via this construction, Aut(H) acts on the set of allowable subgroups;
- let  $\Sigma$  be the stabiliser of  $U/R^*$  in Aut(H) under this action;
- every α ∈ Σ defines an automorphism of F/U ≅ K;
   let S ≤ Aut(K) be the subgroup induced by Σ;
- let  $T \leq \operatorname{Aut}(K)$  be the kernel of  $\operatorname{Aut}(K) \to \operatorname{Aut}(H)$ .

#### Theorem

With the previous notation,  $Aut(K) = \langle S, T, Inn(K) \rangle$ .

For a proof see O'Brien (1999).

### **Computing automorphism groups**

### Recall from *p*-group generation:

- $H = G/P_k(G)$  and  $K = G/P_{k+1}(G)$ ; we have  $K/P_k(K) \cong H$ ;
- K is quotient of  $H^*$  by allowable subgroup  $U/R^*$ ;
- $S \leq \operatorname{Aut}(K)$  induced by stabiliser  $\Sigma$  of  $U/R^*$  in  $\operatorname{Aut}(H)$
- $T \leq \operatorname{Aut}(K)$  is kernel of  $\operatorname{Aut}(K) \to \operatorname{Aut}(H)$ ;
- $\operatorname{Aut}(K) = \langle S, T, \operatorname{Inn}(K) \rangle.$

**Problem:** how to determine S and T efficiently?

### Lemma

Let  $\{g_1, \ldots, g_d\}$  and  $\{x_1, \ldots, x_l\}$  be minimal generating sets for K and  $P_k(K)$ , respectively. Define

$$\beta_{i,j} \colon K \to K, \quad \begin{cases} g_i \mapsto g_i x_j \\ g_n \mapsto g_n \quad (n \neq i). \end{cases}$$

Then  $T = \langle \{\beta_{i,j} : 1 \leq i \leq d, 1 \leq j \leq l \} \rangle$ , an elementary abelian *p*-group.

**Main problem:** Compute S, that is, the stabiliser  $\Sigma$  of  $U/R^*$  in Aut(H).

 Heiko Dietrich (heiko.dietrich@monash.edu)
 Computational aspects of finite p-groups
 ICTS, Bangalore 2016

Automorphism Groups

E

Stabiliser Problem

# **Induction step:** example

Consider  $G = Pc\langle a_1, ..., a_4 | [a_2, a_1] = a_3, a_1^5 = a_4, a_2^5 = a_3^5 = a_4^5 = 1 \rangle$ ; this group has 5-class 2 with  $P_1(G) = \langle a_3, a_4 \rangle$ .

Clearly,  $H = G/P_1(G) = \operatorname{Pc}\langle a_1, a_2 \mid a_1^5 = a_2^5 = 1 \rangle$  with  $\operatorname{Aut}(H) \cong \operatorname{GL}_2(5)$ .

### Now compute:

- $H^* = \Pr(\langle a_1, \dots, a_5 \mid [a_2, a_1] = a_3, a_1^5 = a_4, a_2^5 = a_5, a_3^5 = a_4^5 = a_5^5 = 1 \rangle$
- the allowable subgroup  $U/R^* = \langle a_5 \rangle$  yields G as a quotient of  $H^*$
- $\alpha_1 \colon (a_1, a_2) \mapsto (a_1^2, a_2)$  and  $\alpha_2 \colon (a_1, a_2) \mapsto (a_1^4 a_2, a_1^4)$  generate Aut(H); their extensions act on the multiplicator  $\langle a_3, a_4, a_5 \rangle$  as

$$\begin{pmatrix} 2 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 1 \end{pmatrix}, \quad \begin{pmatrix} 1 & 0 & 0 \\ 0 & 4 & 1 \\ 0 & 4 & 0 \end{pmatrix}$$

- the stabiliser  $\Sigma$  of  $U/R^*$  is generated by the extensions of  $\alpha_1$  and  $\alpha_2\alpha_1\alpha_2^2$
- a generating set for T is  $\{\beta_{1,4}, \beta_{2,4}, \beta_{1,3}, \beta_{2,3}\}$

This yields indeed  $\operatorname{Aut}(G) = \langle T, S, \operatorname{Inn}(G) \rangle$ , where S is induced by  $\Sigma$ 

# **Stabiliser problem**

**To do:** Compute stabiliser of allowable subgroup  $U/R^*$  under action of Aut(H).

Our set-up is:

- consider  $M = R/R^*$  as GF(p)-vectorspace and  $V = U/R^*$  as subspace;
- represent the action of Aut(H) on M as a subgroup  $A \leq GL_m(p)$ ;
- compute the stabiliser of V in A.

Simple Approach: Orbit-Stabiliser Algorithm – constructs the whole orbit!

### We'll briefly discuss the following ideas:

- exploiting structure of M
- **2** exploiting structure of A
- exploiting structure of K (and G)

Heiko Dietrich	(heiko.dietrich@monash.edu)	Computational aspects of finite <i>p</i> -groups		ICTS, Bangalore 2016	
Au	tomorphism Groups	Algorithm	Example	Stabiliser Problem	
		-			

# Stabiliser problem: exploiting structure of ${\cal M}$

**Task:** compute stabiliser of allowable subspace  $V \leq M$  under A.

Idea: exploit the fact that  $N = P_{k+1}(H^*) \le M$  is characteristic in  $H^*$ , and that M = NV (since V is allowable)

### Use this to split stabiliser computation in two steps:

• compute the stabiliser of  $V \cap N$  as subspace of N:

use MeatAxe to compute composition series of N as A-module; then compute orbit and stabiliser of  $V \cap N$  stepwise⁷

• compute orbit of  $V/(V \cap N)$  as subspace of  $M/(V \cap N)$ :

 $V/(V \cap N)$  is complement to  $N/(V \cap N)$  in  $M/(V \cap N)$ , and  $N/(V \cap N)$  is A-invariant; compute A-module composition series of M/N and  $N/(V \cap N)$  and break computation up in smaller steps

eiko Dietrich (heiko.dietrich@monash.edu)

⁷see Eick, Leedham-Green, O'Brien (2002) for details

### **Stabiliser problem: exploiting structure of** *A*

**Task:** compute stabiliser of allowable subspace  $V \leq M$  under A.

**Idea:** Consider series  $A \supseteq S \supseteq P \supseteq 1$ , where

- P induced by  $\ker(H \to \operatorname{Aut}(H/P_1(H)))$ , a normal p-subgroup
- S solvable radical, with  $S = S_1 \triangleright \ldots \triangleright S_n \triangleright P$ , each section prime order.

Schwingel Algorithm for stabiliser under *p*-group *P* One can compute a "canonical" representative of  $V^P$  and generators for  $\operatorname{Stab}_P(V)$  without enumerating the orbit; see E-LG-O'B (2002).

Next, compute  $\operatorname{Stab}_A(V)$  along  $S = S_1 \triangleright \ldots \triangleright S_n \triangleright P$ , using the next lemma:

#### Lemma

Let L be a group acting on  $\Omega$ ; let  $T \leq L$  and let  $\omega \in \Omega$ . Then  $\omega^T$  is an L-block in  $\Omega$ , and  $\operatorname{Stab}_L(\omega^T) = T\operatorname{Stab}_L(\omega)$ .

If  $l \in \operatorname{Stab}_L(\omega^T)$ , then  $\omega^l = \omega^t$  for some  $t \in T$ , hence  $lt^{-1} \in \operatorname{Stab}_L(\omega)$ .

Heiko Dietrich	(heiko.dietrich@monash.edu)	Computational asp	ects of finite $p$ -groups	ICTS, Bangalore 2016	
Au	tomorphism Groups	Algorithm	Example	Stabiliser Problem	

# **Stabiliser problem: exploiting structure of** *A*

Compute  $\operatorname{Stab}_A(V)$  along  $S = S_1 \triangleright \ldots \triangleright S_n \triangleright P$ , using the next lemma:

#### Lemma

Let L be a group acting on  $\Omega$ ; let  $T \leq L$  and  $\omega \in \Omega$ . Then  $\omega^T$  is an L-block in  $\Omega$ , and  $\operatorname{Stab}_L(\omega^T) = T\operatorname{Stab}_L(\omega)$ .

If orbit  $V^{S_i}$  and stabiliser  $\operatorname{Stab}_{S_i}(V)$  are known, compute  $\operatorname{Stab}_{S_{i-1}}(V^{S_i})$ , and extend each generator to an element in  $\operatorname{Stab}_{S_{i-1}}(V)$ .

**Advantage:** Reduce the number of generators of  $Stab_S(V)$  substantially

# Stabiliser problem: exploiting structure of K (and G)

**Recall:** we aim to construct Aut(G) by induction on lower *p*-central series with terms  $G_i = G/P_i(G)$ ; initial step is  $Aut(G_1) \cong GL_d(p)$ 

**Idea:** Aut(G) induces a subgroup  $R \leq Aut(G_1)$ ; instead of starting with  $Aut(G_1)$ , start with  $L \leq GL_d(p)$  such that  $R \leq L$  and [L:R] is small.

### Approach:

- construct a collection of characteristic subgroups of G, such as: centre, derived group,  $\Omega$ , 2-step centralisers,...
- restrict this collection to  $G_1 = G/P_1(G)$
- Schwingel has developed an algorithm to construct the subgroup  $R \leq \operatorname{Aut}(G_1) \cong \operatorname{GL}_d(p)$  stabilising this lattice of subspaces of  $G_1$

This approach frequently reduces to small subgroups of  $GL_d(p)$  as initial group.



# **Conclusion Lecture 4**

### Things we have discussed in the forth lecture:

- std-pcp, isomorphism test for *p*-groups
- automorphism group computation

### Lecture 4 is also the last lecture on the ANUPQ algorithms:

ANUPQ (ANU-*p*-Quotient program), 22,000 lines of C code developed by O'Brien; providing implementations of

- *p*-quotient algorithm
- *p*-group generation algorithm
- $\bullet$  isomorphism test for  $p\mbox{-}{\rm groups}$
- automorphisms of *p*-groups

Implementations are also available in GAP and Magma; various papers discuss the theory and efficiency of these algorithms.

# What's the Greek letter for "p" ...?

Heiko Dietrich (heiko.dietrich@monash.edu)	Computational aspec	cts of finite $p$ -groups	ICTS, Bangalore 2016
Automorphism Groups	Algorithm	Example	Stabiliser Problem





Algorithm

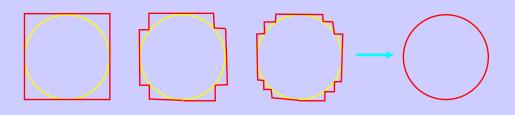
Example

### "Theorem"

We have  $\pi = 4$ .

### Proof.

We take a unit circle with diameter 1 and approximate its circumference (which is defined to be  $\pi$ ) by computing its arc-length. Remember how arc-length is defined? Use a polygonal approximation!



In every iteration: cirumference is  $\pi$ , arc lenght of red curve is 4. So in the limit:  $\pi = 4$ , as claimed.

### Well ... obviously that is wrong!

Heiko Dietrich (heiko.dietrich@monash.edu)	Computational	aspects of finite $p$ -groups	ICTS, Bangalore 2016
Automorphism Groups	Algorithm	Example	Stabiliser Problem
Automorphism Groups	Algorithm	Example	Stabiliser Problem

Everyone knows that the following is true ...

### "Theorem"

We have  $\pi = 0$ .

### Proof.

We start with Euler's Identity  $1 = e^{2\pi i}$ , which yields  $e = e^{2\pi i+1}$ . Now observe:

$$e = e^{2\pi i + 1} = (e^{2\pi i + 1})^{2\pi i + 1} = e^{(2\pi i + 1)^2} = e^{-4\pi^2} e^{4\pi i}.$$

Since  $e^{4\pi i} = 1$ , this yields  $1 = e^{-4\pi^2}$ . Since  $-4\pi^2 \in \mathbb{R}$ , this forces  $0 = -4\pi^2$ . Since  $-4 \neq 0$ , we must have  $\pi = 0$ , as claimed.



# **Coclass theory**

Heiko Dietrich	(heiko.dietrich@monash.edu)	Computational aspects of finite <i>p</i> -groups			ICTS, Bangalore 2016		
	Coclass Theory	Maximal Class	Coclass	Coclass Graph	Central Conjecture	Some results	

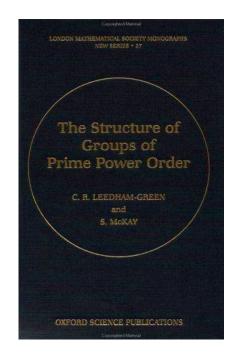
### Resources

▶ Go to Automorphisms

► Go to End

**The structure of groups of prime-power order** C. R. Leedham-Green, S. McKay Oxford Science Publications (2002)

and some recent papers on coclass graphs (Eick, Leedham-Green, Newman, O'Brien, D.)



Coclass

# **Classifying** *p*-groups by order

### **Recall:**

order	#	order	#
1	1	128	2,328
2	1	256	56,092
4	2	512	10,494,213
8	5	1024	49,487,365,422
16	14	2048	>1,774,274,116,992,170
32	51		
64	267		

"The precise structure of *p*-groups is too complex for the human intellect." (Leedham-Green & McKay 2002)

Heiko Dietrich	(heiko.dietrich@monash.edu)	Computational aspects of finite <i>p</i> -groups				TS, Bangalore 2016	
						<b>C H</b>	
	Coclass Theory	Maximal Class	Coclass	Coclass Graph	Central Conjecture	Some results	

# **Maximal class**

### **Maximal class** A *p*-group *G* of order $p^n$ has **maximal class** if it has nilpotency class n - 1.

- Groups of maximal class have been investigated in detail. (Wiman 1954, Blackburn 1958, Leedham-Green & McKay 1976–1984, Fernández-Alcober 1995, Vera-López et al. 1995–2008)
- The 2- and 3-groups of maximal class are classified. (Blackburn: Description by finitely many *parametrised presentations*.)
- The 5-groups of maximal class are investigated in detail. (Leedham-Green & McKay, Newman 1990, D., Eick & Feichtenschlager 2007)
- For  $p \ge 7$  such a classification is open.

## Coclass

Maximal class is an important special case in coclass theory:

### Coclass

A p-group G of order  $p^n$  and nilpotency class c has coclass n - c.

### Thus:

- the *p*-groups of maximal class are the *p*-groups of coclass 1,
- coclass is an isomorphism invariant.

**Strategy:** Investigate the *p*-groups of a fixed coclass. (Leedham-Green & Newman 1980)

Leedham-Green & Newman proposed five **Coclass Conjectures A–E** on the structure of the *p*-groups of a fixed coclass. Their proof was a first milestone in **coclass theory** and provided a deep insight in the structure of *p*-groups.

Heiko Dietrich	(heiko.dietrich@monash.edu)	Computational a	aspects of finite	e p-groups	IC	ICTS, Bangalore 2016		
	Coclass Theory	Maximal Class	Coclass	Coclass Graph	Central Conjecture	Some results		

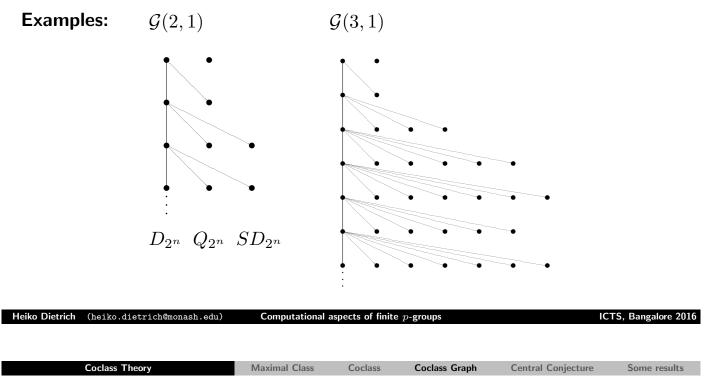
# Coclass

Coclass Conje	ectures
Theorem A:	There is a function $f(p, r)$ such that every <i>p</i> -group of coclass $r$ has a normal subgroup of nilpotency class 2 and index at most $f(p, r)$ .
Theorem B:	There is a function $g(p, r)$ such that every p-group of coclass $r$ has derived length at most $g(p, r)$ .
Theorem C:	Every pro- $p$ group of coclass $r$ is solvable. (= inverse limit of finite $p$ -groups of coclass $r$ .)
Theorem D:	There are only finitely many isomorphism types of infinite pro- $p$ groups of coclass $r$ .
Theorem E:	There are only finitely many isomorphism types of solvable infinite pro- $p$ groups of coclass $r$ .
(Leedham-Greer	n 1994, Shalev 1994)

**Central Conjecture** 

### **Coclass graph**

Main approach since 1999: analyse the coclass graph $\mathcal{G}(p,r).$				
Vertices:	Isomorphism type reps of finite $p$ -groups of coclass $r$ .			
Edges:	$G \to H$ if and only if $G \cong H/\gamma_{cl(H)}(H)$ ; then $ H  = p G $ .			



# **Coclass graph**

The infinite paths in  $\mathcal{G}(p, r)$ :

• There is 1-to-1 correspondence between the **infinite pro-***p* **groups** of coclass *r* (up to isom.) and the *maximal* infinite paths in  $\mathcal{G}(p, r)$ .

### It follows from the Coclass Theorems:

- The infinite paths are *well-understood* and finite in number!
- Only finitely many groups are not connected to an infinite path.

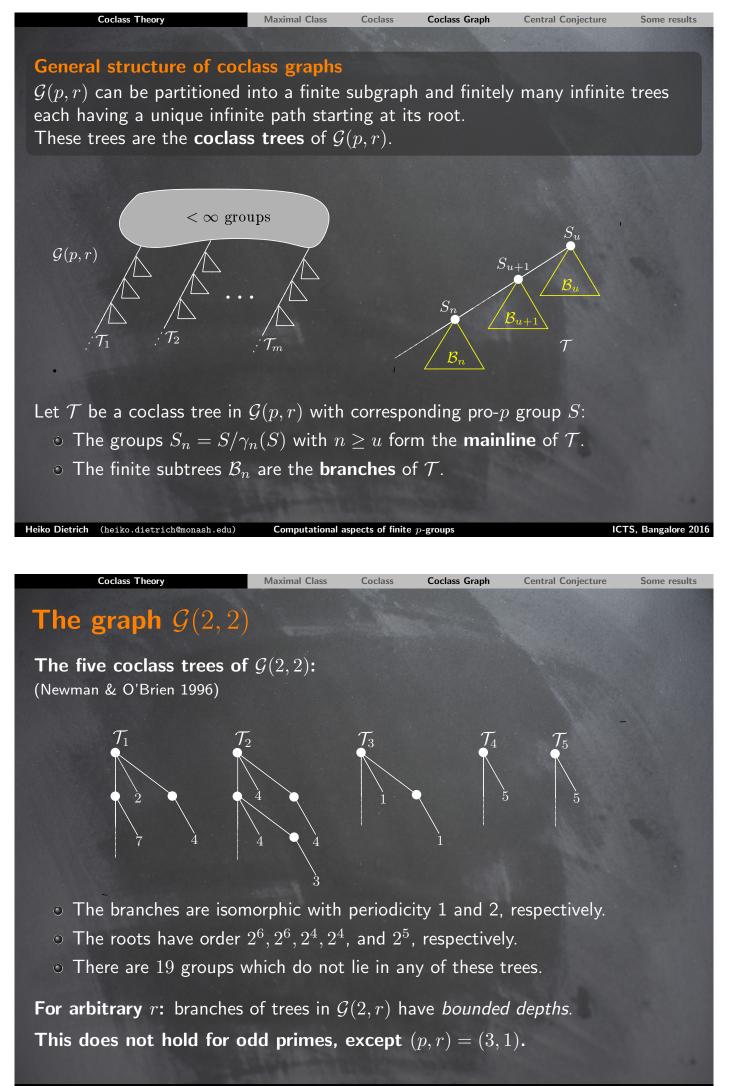
### Number of infinite paths in $\mathcal{G}(p, r)$ :

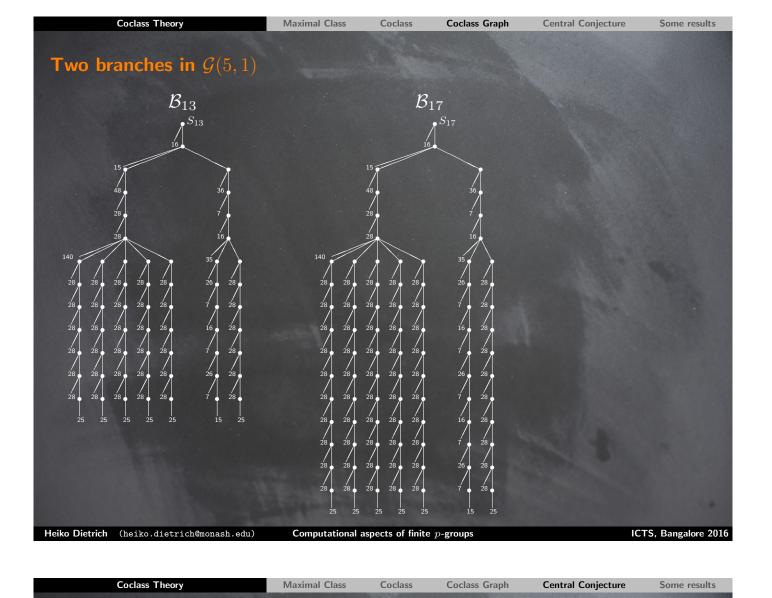
- p arbitrary and r = 1 (Blackburn): 1
- p = 2 and r = 2, 3 (Newman & O'Brien): 5, 54
- p = 3 and r = 2, 3, 4 (Eick): 16,  $\geq 1271$ ,  $\geq 137299952383$

# Sorry!

We have to switch to the black board style because some figure are prepared for that...

Heiko Dietrich	(heiko.dietrich@monash.edu)	Computational aspects of finite <i>p</i> -groups			IC	ICTS, Bangalore 2016	
	Coclass Theory	Maximal Class	Coclass	Coclass Graph	Central Conjecture	Some results	
Sorry	/!						
	ive to switch to t	he black b	oard st	yle becaus	e some figur	e are	
prepar	ed for that						





Based on significant computation with the *p*-group generation algorithm:

### **Central Conjecture**

- $\mathcal{G}(p,r)$  can be described by a finite subgraph and *periodic patterns*.
- The *p*-groups of coclass *r* can be *classified*.
   (~ description by finitely many *parametrised presentations*)

Example: the groups in  $\mathcal{G}(2,1)$  of order  $2^n \ge 16$ 

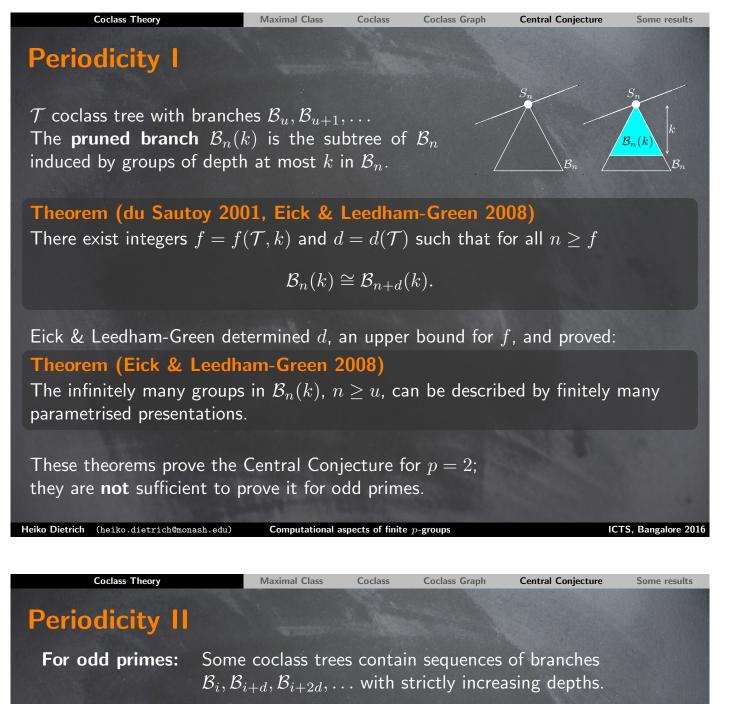
$$D_{2^{n}} = \operatorname{Pc}\langle a, b \mid a^{2^{n-1}} = b^{2} = 1, a^{b} = a^{-1} \rangle,$$
  

$$SD_{2^{n}} = \operatorname{Pc}\langle a, b \mid a^{2^{n-1}} = b^{2} = 1, a^{b} = a^{2^{n-2}-1} \rangle,$$
  

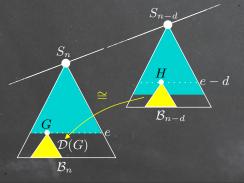
$$Q_{2^{n}} = \operatorname{Pc}\langle a, b \mid a^{2^{n-1}} = 1, b^{2} = a^{2^{n-2}}, a^{b} = a^{-1} \rangle.$$

#### Known results:

- The Central Conjecture is proved for p = 2. (Newman & O'Brien 1999, du Sautoy 2001, Eick & Leedham-Green 2008)
- Applications for p = 2: Some invariants of the groups can be described in a uniform way. (Eick 2006, 2008)
- For odd primes: Only partial results are known.



Describe the growth of these branches.

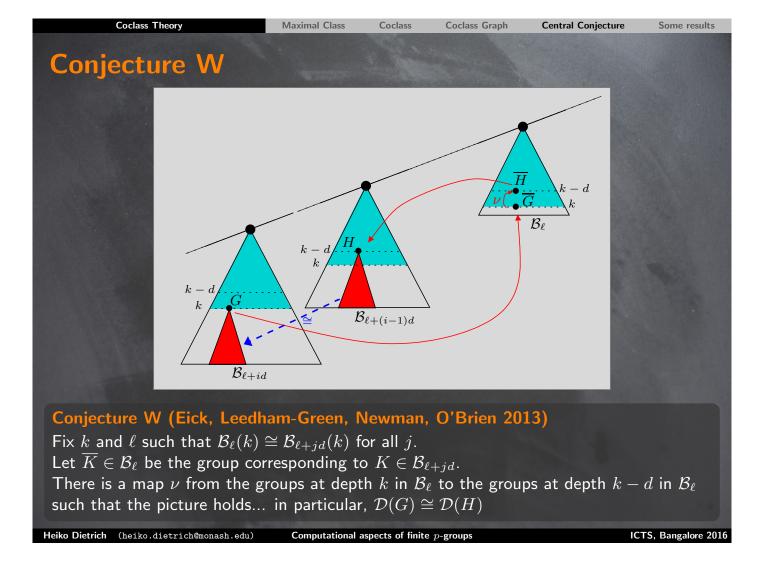


Conjecture (based on experiments for  $\mathcal{G}(5,1)$  and  $\mathcal{G}(3,2)$ )

If e and n are large enough, then for every group G at depth e in  $\mathcal{B}_n$  there exists a group H at depth e - d in  $\mathcal{B}_{n-d}$  such that  $\mathcal{D}(G) \cong \mathcal{D}(H)$ .

This conjecture is rather *vague* and only very little is known; some important results for  $\mathcal{G}(p, 1)$  exist.

**Problem:** 



Coclass Theory

eory

Coclass Coclass Graph

Central Conjecture

Some results

# Important subtree: skeleton groups

Let  $\mathcal{T}$  be a coclass tree in  $\mathcal{G}(p,r)$ , with associated pro-p group S.

**Maximal Class** 

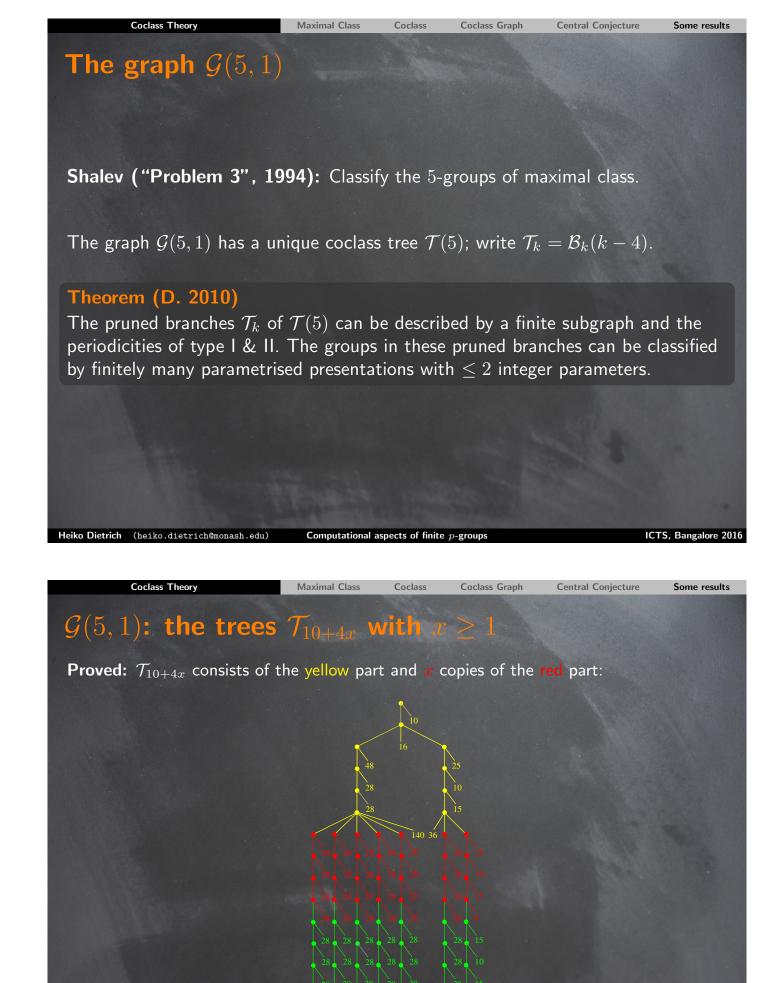
**Problem:** the branches of  $\mathcal{T}$  are usually pretty "thick" and "wide".

### Skeleton groups (for split pro-p groups)

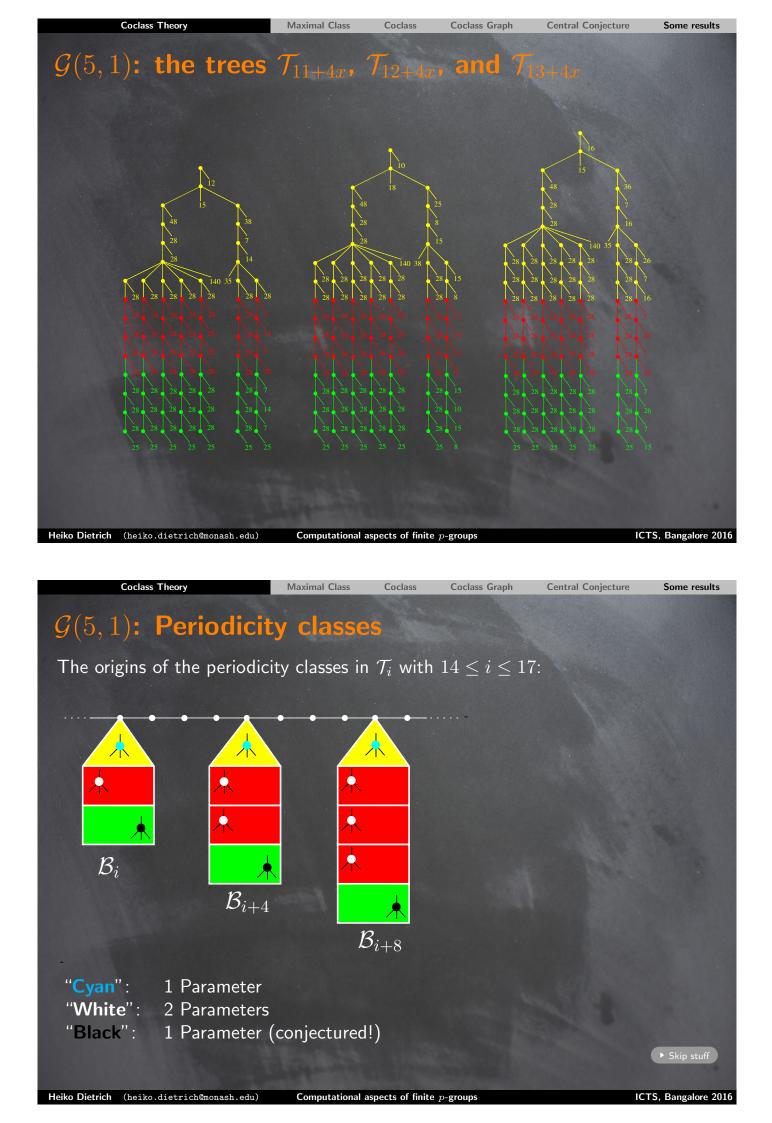
Let  $S = P \ltimes T$  with  $T \cong (\mathbb{Z}_p^d, +)$  and uniserial series  $T = T_0 > T_1 > T_2 > \ldots$ Let  $\gamma \colon T \land T \twoheadrightarrow T_n$  be P-module hom and  $m \ge n$  such that  $\gamma(T_n \land T) \le T_m$ . Let  $T_{\gamma,m} = (T/T_m, \circ)$  with  $(a + T_m) \circ (b + T_m) = a + b + \frac{1}{2}\gamma(a \land b) + T_m$ ; then  $C_{\gamma,m} = P \ltimes T_{\gamma,m}$  is the skeleton group defined by  $\gamma$  and m.

### Theorem (Leedham-Green 1994)

If G is in  $\mathcal{T}$ , then there is  $N \leq G$  with order bounded by r and p, such that G/N is a "skeleton group"; the structure of skeleton groups is easier to understand, and the "skeleton of  $\mathcal{T}$ " is a significant subtree of  $\mathcal{T}$ .



**Conjecture:** The difference  $\mathcal{B}_{10+4x} \setminus \mathcal{T}_{10+4x}$  is the green part.





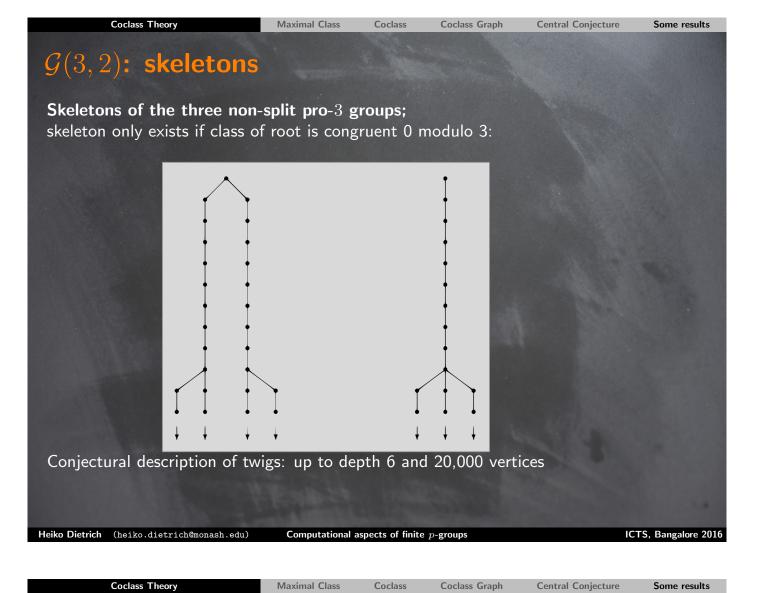
**Maximal Class** 

Coclass

**Coclass Graph** 

**Central Conjecture** 

Some results



### Know periodicity results

Most results and conjectures are motivated by **computer experiments**, in particular, with the *p*-group generation algorithm.

### What is known so far:

- periodicity of type I for all graphs  $\mathcal{G}(p,r)$ ,
- $\circ$  significant *local* results on periodicity of type II for the graphs  $\mathcal{G}(p, 1)$ ,
- $\circ$  most of  $\mathcal{G}(5,1)$  and the skeleton structure of  $\mathcal{G}(3,2)$

### Comments on periodicity of type II:

- all known results consider pruned branches
- o most results consider only skeleton groups
- $\mathcal{G}(5,1)$  and  $\mathcal{G}(3,2)$  only have branches of finite width
- D. & Eick recently considered  $\mathcal{G}(p,1)$  in more detail (2016)

There is still a lot to do – we're working on it ... 🤐

Maximal Class

A new result: maximal class and 'large' aut grps

Now consider  $\mathcal{G}(p,1)$  with  $p \geq 7$ .

Let  $\mathcal{T}$  be the coclass tree with branches  $\mathcal{B}_j$  and bodies  $\mathcal{T}_j = \mathcal{B}_j(j-2p+8)$ .

Motivated by the known periodicity results for  $\mathcal{G}(p, 1)$  and **promising computer** experiments, Bettina Eick and I studied the following subtrees of  $\mathcal{T}$ :

#### Definition

Let  $\mathcal{B}_j^*$  be the subtree of  $\mathcal{B}_j$  consisting of all groups whose automorphism group order is divisible by p-1. Let  $\mathcal{S}_j^*$  be the subtree of the body  $\mathcal{T}_j$  consisting of all *skeleton groups* whose automorphism group order is divisible by p-1.

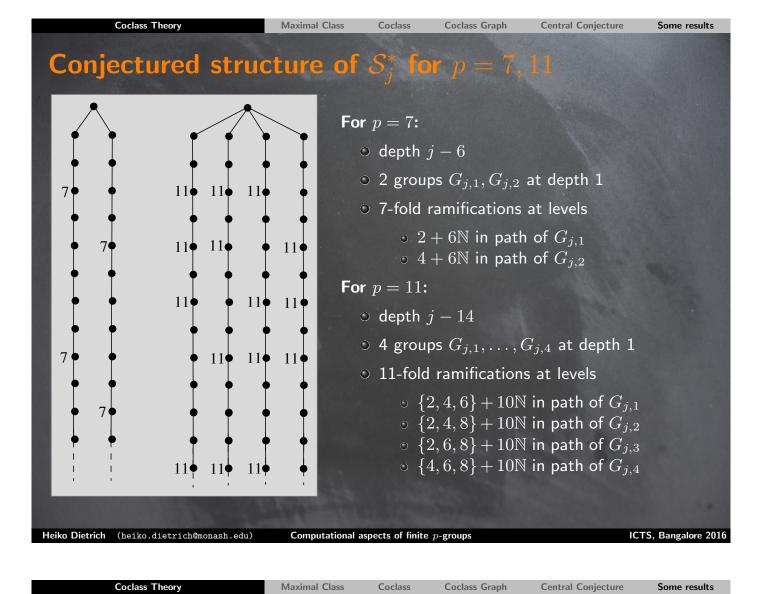
(Note: p-1 is essentially the largest possible p'-part of that aut-group order.)

Heiko Dietrich (heiko.dietrich@monash.edu)

Computational aspects of finite *p*-groups

ICTS, Bangalore 2016





# p-groups of maximal class with 'large' aut-group

Let d = p - 1 and  $\ell = (p - 3)/2$ . Theorem (2016)

- The skeleton  $\mathcal{S}_n^*$  has  $\ell$  groups  $G_{n,1}, \ldots, G_{n,\ell}$  at depth 1.
- Ramifications are always p-fold and occur exactly at depth

$$\{2, 4, \dots, d-2\} \setminus \{d-2i\} + d\mathbb{N}$$

in the path of  $G_{n,i}$ , for  $i = 1, \ldots, \ell$ .

The proof is heavily based on number theory and existing results for maximal class groups (19 pages, submitted 2016).

### Conjectural description of twigs:

structure of twigs depends only on i, on  $(e \mod d)$ , and on  $(n \mod d)$ .

This is the first periodicity result supporting Conjecture W in the context of coclass trees with unbounded width.



..... looking back:

The End

- motivation
- ② pc presentations

The End

- ③ p-quotient algorithm
- p-group generation
- isomorphism test
- automorphism groups
- coclass theory

YLL