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Motivation Hello! Why p-groups? Outline Resources

Welcome!

In this lecture series we discuss

Computational Aspects of Finite p-Groups.

A finite p-group is a group whose order is a positive power of the prime p.

Convention

Throughout, p is a prime; unless stated otherwise, all groups and sets are finite.

Lecture Material

Slides etc will be uploaded at http://users.monash.edu/~heikod/icts2016

Assumed knowledge

Some group theory...
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Why p-groups?
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There’s an abundant supply of p-groups

ord. #
1 1
2 1
3 1
4 2
5 1
6 2
7 1
8 5
9 2

10 2
11 1
12 5
13 1

ord. #
14 2
15 1
16 14
17 1
18 5
19 1
20 5
21 2
22 2
23 1
24 15
25 2
26 2

ord. #
27 5
28 4
29 1
30 4
31 1
32 51
33 1
34 2
35 1
36 14
37 1
38 2
39 2

ord. #
40 14
41 1
42 6
43 1
44 4
45 2
46 2
47 1
48 52
49 2
50 5
51 1
52 5

ord. #
53 1
54 15
55 2
56 13
57 2
58 2
59 1
60 13
61 1
62 2
63 4
64 267
65 1

there are p2n
3/27+O(n5/3) groups of order pn

proved and improved by Higman (1960), Sims (1965), Newman & Seeley (2007)

conjecture: “almost all” groups are p-groups (2-groups)
for example, 99% of all groups of order ≤ 2000 are 2-groups
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Important aspects of p-groups

Some comments on p-groups

Folklore conjecture: “almost all groups are p-groups”

Sylow Theorem: every nontrivial group has p-groups as subgroups

Nilpotent groups: direct products of p-groups

Solvable groups: iterated extensions of p-groups

Counterpart to theory of finite simple groups

Challenge: classify p-groups...

Many “reductions” to p-groups exist: Restricted Burnside Problem,
cohomology, Schur multiplier, p-local subgroups, . . .

p-groups are fascinating – and accessible to computations! So let’s do it...
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Outline of this lecture series

1 motivation
2 pc presentations Go there

3 p-quotient algorithm Go there

4 p-group generation Go there

5 classification by order Go there

6 isomorphisms Go there

7 automorphisms Go there

8 coclass theory Go there
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Main resources∗

Handbook of computational group theory
D. Holt, B. Eick, E. A. O’Brien
Chapman & Hall/CRC, 2005

The p-group generation algorithm
E. A. O’Brien
J. Symb. Comp. 9, 677-698 (1990)

∗thanks to E. A. O’Brien

∗

for providing some slides
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pc presentations

Go to Overview

Go to p-Quotient Algorithm
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Groups and computers

How to describe groups in a computer?

For example, the dihedral group D8 can be defined as a . . .

. . . permutation group
G = 〈(1, 2, 3, 4), (1, 3)〉;

. . . matrix group
G = 〈( 0 1

2 0 ) , ( 1 0
0 2 )〉 ≤ GL2(3);

. . . finitely presented group

G = 〈r,m | r4,m2, rm = r3〉.

Best for p-groups: (polycyclic) presentations!
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Group presentations
Let F be the free group on a set X 6= ∅; let R be a set of words in X tX−1.
If R = RF is the normal closure of R in F , then

G = F/R

is the group defined by the presentation {X | R} with generators X and
relators R; we also write G = 〈X | R〉 and call 〈X | R〉 a presentation for G.
Informally, it is the “largest” group generated by X and satisfying the relations R.

Example 1

Let X = {r,m} and R = {r4,m2,

relator︷ ︸︸ ︷
m−1rmr−3}, and

G = 〈X | R〉 = 〈r,m | r4,m2, rm = r3︸ ︷︷ ︸
relation

〉.

What can we say about G? Well... rm = r3 means rm = mr3, so:

G = {mirj | i = 0, 1 and j = 0, 1, 2, 3}, so |G| ≤ 8;

D8 = 〈r,m〉 with r = (1, 2, 3, 4) and m = (1, 3) satisfies R; thus G ∼= D8.
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Group presentations

Problem: many questions are algorithmically undecidable in general; eg

is 〈X | R〉 finite, trivial, or abelian?

is a word in X trivial in 〈X | R〉?

However:

group presentations are very compact definitions of groups;

many groups from algebraic topology arise in this form;

some efficient algorithms exist, eg so-called “quotient algorithms”;
(see also C. C. Sims: “Computation with finitely presented groups”, 1994)

many classes of groups can be studied via group presentations.

Let’s discuss how to define p-groups by a useful presention!
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Background: central series

Center

If G is a p-group, then its center Z(G) = {g ∈ G | ∀h ∈ G : gh = g} is non-trivial.

This leads to the upper central series of a p-group G defined as

1 = ζ0(G) < ζ1(G) < . . . < ζc(G) = G

where ζ0(G) = 1 and each ζi+1(G) is defined by ζi+1(G)/ζi(G) = Z(G/ζi(G));
it is the fastest ascending series with central sections.

Related is the lower central series

G = γ1(G) > γ2(G) > . . . > γc+1(G) = 1

where γ1(G) = G and each γi+1(G) is defined as1 γi+1(G) = [G, γi(G)];
it is the fastest descending series with central sections.

The number c is the same for both series; the (nilpotency) class of G.

1As usual, [A,B] = 〈[a, b] | a ∈ A, b ∈ B〉 where [a, b] = a−1b−1ab = a−1ba
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Example: central series

Example 2

Let G = D16 = 〈r,m〉 with r = (1, 2, 3, 4, 5, 6, 7, 8), m = (1, 3)(4, 8)(5, 7).
Then G has class c = 3; its lower central series is

G > 〈r2〉 > 〈r4〉 > 1

and has sections2 G/γ2(G) ∼= C2 × C2, γ2(G)/γ3(G) = C2, and γ3(G) = C2.
We can refine this series so that all section are isomorphic to C2:

G > 〈r〉 > 〈r2〉 > 〈r4〉 > 1.

In general: every central series of a p-group G can be refined to a composition
series

G = G1 > G2 > . . . > Gn+1 = 1

where each Gi EG and Gi/Gi+1
∼= Cp; thus G is a polycyclic group.

2If n is a positive integer, then Cn denotes a cyclic group of size n.
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Polycyclic groups

Polycyclic group

The group G is polycyclic if it admits a polycyclic series, that is, a subgroup
chain G = G1 ≥ . . . ≥ Gn+1 = 1 in which each Gi+1 EGi and Gi/Gi+1 is cyclic.

Polycyclic groups: solvable groups whose subgroups are finitely generated.

Example 3

The group G = 〈(2, 4, 3), (1, 3)(2, 4)〉 ∼= Alt(4) is polycyclic with series

G = G1 > G2 > G3 > G4 = 1

where G2 = 〈(1, 3)(2, 4), (1, 2)(3, 4)〉 = V4 E G1

G3 = 〈(1, 2)(3, 4)〉 E G2

Each Gi/Gi+1 is cyclic, so there is gi ∈ Gi \Gi+1 with Gi/Gi+1 = 〈giGi+1〉;
for example, g1 = (2, 4, 3), g2 = (1, 3)(2, 4), g3 = (1, 2)(3, 4).
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Polycyclic Sequence
Polycyclic sequence

Let G = G1 ≥ . . . ≥ Gn+1 = 1 be a polycyclic series.
A related polycyclic sequence X with relative orders R(X) is

X = [g1, . . . , gn] with R(X) = [r1, . . . , rn]

where each gi ∈ Gi \Gi+1 and ri = |giGi+1| = |Gi/Gi+1|.
A polycyclic series is also called pcgs (polycyclic generating set).

Important observation: each Gi = 〈gi, gi+1, . . . , gn〉 and |Gi| = ri · · · rn.

Example 4

Let G = D16 = 〈r,m〉 with r = (1, 2, 3, 4, 5, 6, 7, 8) and m = (1, 3)(4, 8)(5, 7).
Examples of pcgs:

X = [m, r] with R(X) = [2, 8]: G = 〈m, r〉 > 〈r〉 > 1;

X = [m, r, r4] with R(X) = [2, 4, 2]: G = 〈m, r, r4〉 > 〈r, r4〉 > 〈r4〉 > 1;

X = [m, r, r3, r2] with R(X) = [2, 1, 2, 4]; note that 〈r, r3, r2〉 = 〈r3, r2〉.
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Normal Forms

Lemma: Normal Form

Let X = [g1, . . . , gn] be a pcgs for G with R(X) = [r1, . . . , rn].
If g ∈ G, then g = ge11 · · · genn for unique ei ∈ {0, . . . , ri − 1}.

We call g = ge11 · · · genn the normal form with respect to X.

Proof.
Let g ∈ G be given; we use induction on n.

If n = 1, then G = 〈g1〉 ∼= Cr1 and the lemma holds; now let n ≥ 2.

Since G/G2 = 〈g1G2〉 ∼= Cr1 , we can write gG2 = ge11 G2 for a unique
e1 ∈ {0, . . . , r1 − 1}, that is, g′ = g−e11 g ∈ G2.

X ′ = [g2, . . . , gn] is pcgs of G2 with R(X ′) = [r2, . . . , rn], so by induction
g′ = g−e11 g = ge22 · · · genn for unique ei ∈ {0, . . . , ri − 1}.
In conclusion, g = ge11 · · · genn as claimed.
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Example: Normal Forms

Example 5

A pcgs of G = Alt(4) with R(X) = [3, 2, 2] is X = [g1, g2, g3] where

g1 = (1, 2, 3), g2 = (1, 2)(3, 4), g3 = (1, 3)(2, 4).

This yields G = G1 > G2 > G3 > G4 = 1 with each Gi = 〈gi, . . . , g3〉.
Now consider g = (1, 2, 4) ∈ G.

First, we have gG2 = g21G2, so g′ = g−21 g = (1, 4)(2, 3) ∈ G2.

Second, g′G3 = g2G3, so g′′ = g−12 g′ = (1, 3)(2, 4) = g3 ∈ G3.

In conclusion, g = g21g
′ = g21g2g

′′ = g21g2g3.
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Polycyclic group to presentation
Let G be group with pcgs X = [g1, . . . , gn] and R(X) = [r1, . . . , rn];
define Gi = 〈gi, . . . , gn〉. There exist a∗,j , b∗,∗,j ∈ {0, 1, . . . , rj − 1} with:

grii = g
ai,i+1

i+1 · · · gai,nn (for all i, since Gi/Gi+1 = 〈giGi+1〉 ∼= Cri)

g
gj
i = g

bi,j,j+1

j+1 · · · gbi,j,nn (for all j < i, since gi ∈ Gj+1 EGj).

A polycyclic presentation (PCP) for G

Let H = 〈x1, . . . , xn | R〉 such R contains exactly the above relations:

xrii = x
ai,i+1

i+1 · · ·xai,nn and x
xj

i = x
bi,j,j+1

j+1 · · ·xbi,j,nn .

Then H ∼= G with pcgs X = [x1, . . . , xn] and R(X) = [r1, . . . , rn].

Proof.
Define ϕ : H → G by xi 7→ gi. The elements g1, . . . , gn satisfy the relations in R,
so ϕ is an epimorphism by von Dyck’s Theorem. By construction, H is
polycyclic with pcgs X and order at most |G|. Thus, ϕ is an isomorphism.
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Polycyclic group to presentation

Example 6

Let G = Alt(4) with pcgs X = [g1, g2, g3] and R(X) = [3, 2, 2] where

g1 = (1, 2, 3), g2 = (1, 2)(3, 4), g3 = (1, 3)(2, 4).

Then g31 = g22 = g23 = 1, gg12 = g2g3, gg13 = g2, gg23 = g3, and so

G ∼= 〈x1, x2, x3 | x31 = x22 = x23 = 1, xx1
2 = x2x3, x

x1
3 = x2, x

x2
3 = x3〉.

Theorem

Every pcgs determines a unique polycyclic presentation;
every polycyclic group can be defined by a polycyclic presentation.
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Pc presentation to group

Polycyclic presentation (pcp)

A presentation 〈x1, . . . , xn | R〉 is a polycyclic presentation with power
exponents s1, . . . , sn ∈ N if the only relations in R are

xsii = x
ai,i+1

i+1 · · ·xai,nn (all i, each ai,k ∈ {0, . . . , sk − 1)

x
xj

i = x
bi,j,j+1

j+1 · · ·xbi,j,nn (all j < i, each bi,j,k ∈ {0, . . . , sk − 1).

We write Pc〈x1, . . . , xn | R〉 and omit trivial commutator relations x
xj

i = xi.
The group defined by a pc-presentation is a pc-group.

Theorem

If G = Pc〈x1 . . . , xn | R〉 with power exps [s1, . . . , sn], then X = [x1, . . . , xn] is a
pcgs of G. If g ∈ G, then g = xe11 · · ·xenn for some ei ∈ {0, . . . , si − 1}.

Careful: (xiGi)
si = 1 only implies that ri = |Gi/Gi+1| divides si, not ri = si;

so in general
R(X) = [r1, . . . , rn] 6= [s1, . . . , sn].
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Consistent pc presentations
Note: Only power exponents (not relative orders) are visible in pc presentations.

Example 7

Let G = Pc〈x1, x2, x3 | x31 = x3, x
2
2 = x3, x

5
3 = 1, xx1

2 = x2x3〉; this is a
pc-group with pcgs X = [x1, x2, x3] and power exponents S = [3, 2, 5].

We show R(X) = [3, 2, 1], so |G| = 6:

First, note that x102 = x53 = 1, so |x2| | 10.

Second, xx1
2 = x2x3 = x32 so x272 = x

(x3
1)

2 = xx3
2 = x

(x2
2)

2 = x2, and thus |x2| | 26.

This implies that 5 - |x2|, and forces x3 = 1 in G.

Note that x01x
0
2x

0
3 = 1 = x01x

0
2x

1
3 are two normal forms (wrt power exponents).

Consistent pc presentation

A pc-presentation with power exponents S is consistent if and only if every group
element has a unique normal form with respect to S; otherwise it is inconsistent.

How to check consistency?  use collection and consistency checks!
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Collection
Let G = Pc〈x1, . . . , xn | R〉 with power exponents S = [s1, . . . , sn].

Consider a reduced word w = xe1i1 · · ·x
er
ir

, that is, each ij 6= ij+1;
we can assume ej ∈ N, otherwise eliminate using power relations.

Collection

Let w = xe1i1 · · ·x
er
ir

as above and use the previous notation:

the word w is collected if w is the normal form wrt S,
that is, i1 < . . . < ir and each ej ∈ {0, . . . , sij − 1};
if w is not collected, then it has a minimal non-normal subword of w, that
is, a subword u of the form

u = x
ej
ij
xij+1

with ij > ij+1, eg u = x23x1

or
u = x

sij
ij

eg u = x52 with s2 = 5.

Collection is a method to obtain collected words.
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Collection algorithm

Let G = Pc〈x1, . . . , xn | R〉 with power exponents S = [s1, . . . , sn].

Consider a reduced word w = xe1i1 · · ·x
er
ir

, that is, each ij 6= ij+1;
we can assume ej ∈ N, otherwise eliminate using power relations.

Collection algorithm
Input: polycyclic presentation Pc〈x1, . . . , xn | R〉 and word w in X
Output: a collected word representing w

Repeat the following until w has no minimal non-normal subword:

choose minimal non-normal subword u = x
sij
ij

or u = x
ej
ij
xij+1

;

if u = x
sij
ij

, then replace u by a suitable word in xij+1, . . . , xn;

if u = x
ej
ij
xij+1

, then replace u by xij+1
u′ with u′ word in xij+1, . . . , xn.

Theorem

The collection algorithm terminates.
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Collection algorithm

If w contains more than one minimal non-normal subword, a rule is used to
determine which of the subwords is replaced (making the process well-defined).

Collection to the left: move all occurrences of x1 to the beginning of the
word; next, move all occurrences of x2 left until adjacent to the x1’s, etc.

Collection from the right: the minimal non-normal subword nearest to the
end of a word is selected.

Collection from the left: the minimal non-normal subword nearest to the
beginning of a word is selected.
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Example: collection

Consider the group

D16
∼= Pc〈x1, x2, x3, x4 | x21 = 1, x22 = x3x4, x23 = x4, x24 = 1,

xx1
2 = x2x3, xx1

3 = x3x4〉.

Aim: collect the word x3x2x1.
Since power exponents are all “2”, we only use generator indices:

”to the left” “from the right” ”from the left”

321 = 3123

= 13423

= 13243

= 12343

= 12334

= 1244

= 12

321 = 3123

= 13423

= 13243

= 13234

= 12334

= 1244

= 12

321 = 231

= 2134

= 12334

= 1244

= 12
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Consistency checks
Theorem 8: consistency checks

Pc〈x1, . . . , xn | R〉 with power exps [s1, . . . , sn] is consistent if and only if the
normal forms of the following pairs of words coincide

xk(xjxi) and (xkxj)xi for 1 ≤ i < j < k ≤ n,
(x
sj
j )xi and x

sj−1
j (xjxi) for 1 ≤ i < j ≤ n,

xj(x
si
i ) and (xjxi)x

si−1
i for 1 ≤ i < j ≤ n,

xj(x
sj
j ) and (x

sj
j )xj for 1 ≤ j ≤ n,

where the subwords in brackets are to be collected first.

Example 9

If G = Pc〈x1, x2, x3 | x31 = x3, x
2
2 = x3, x

5
3 = 1, xx1

2 = x2x3〉, then

(x22)x1 = x3x1 = x1x3 and x2(x2x1) = x2x1x2x3 = x1x
2
2x

2
3 = x1x

3
3.

Since x1x3 = x1x
3
3 are both normal forms, the presentation is not consistent.

Indeed, we deduce that x3 = 1 in G.
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Weighted power-commutator presentation

So far we have seen that every p-group can be defined via a consistent polycyclic
presentation.

However, the algorithms we discuss later require a special type of polycyclic
presentations, namely, so-called weighted power-commutator presentations.
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Weighted power-commutator presentation

A weighted power-commutator presentation (wpcp) of a d-generator group G
of order pn is G = Pc〈x1, . . . , xn | R〉 such that {x1, . . . , xd} is a minimal
generating set G and the relations are

xpj =
∏n

k=j+1
x
α(j,k)
k (1 ≤ j ≤ n, 0 ≤ α(j, k) < p)

[xj , xi] =
∏n

k=j+1
x
β(i,j,k)
k (1 ≤ i < j ≤ n, 0 ≤ β(i, j, k) < p)

note that every Gi = 〈xi, . . . , xn〉 is normal in G.

Moreover, each xk ∈ {xd+1, . . . , xn} is the right side of some relation;
choose one of these as the definition of xk.
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Weighted power-commutator presentation

Example 10

Consider

G = Pc〈 x1, . . . , x5 | x21 = x4, x
2
2 = x3, x

2
3 = x5, x

2
4 = x5, x

2
5 = 1

[x2, x1] = x3, [x3, x1] = x5 〉.

Here {x1, x2} is a minimal generating set of G, and we choose:

x3 has definition [x2, x1] and weight 2;

x4 has definition x21 and weight 2;

x5 has definition [x3, x1] and weight 3.
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Weighted power-commutator presentation

Why are (w)pcp’s useful?

consistent pcp’s allow us to solve the word problem for the group:
given two words, compute their normal forms, and compare them

the additional structure of wpcp’s allows more efficient algorithms:
for example: consistency checks, p-group generation (later)

a wpcp exhibits a normal series G > G1 > . . . > Gn = 1:
many algorithms work down this series and use induction: first solve problem
for G/Gk, and then extend to solve the problem for G/Gk+1, and so
eventually for G = G/Gn.

... how to compute wpcp’s?  p-quotient algorithm (next lecture)
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Conclusion Lecture 1

Things we have discussed in the first lecture:

polycyclic groups, sequences, and series

polycyclic generating sets (pcgs) and relative orders

polycyclic presentations (pcp), power exponents, and consistency

normal forms and collection

consistency checks

weighted polycyclic presentations (wpcp)
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p-quotient algorithm

Go to Presentations

Go to p-Group Generation
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Conclusion Lecture 1

Things we have discussed in the first lecture:

polycyclic groups, sequences, and series

polycyclic generating sets (pcgs) and relative orders

polycyclic presentations (pcp), power exponents, and consistency

normal forms and collection

consistency checks

weighted polycyclic presentations (wpcp)
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Conclusion Lecture 1

weighted polycyclic presentation (wpcp):

all relative orders p

induced polycyclic series is chief series

relations are partitioned into definitions and non-definitions

Example

Consider

G = Pc〈 x1, . . . , x5 | x21 = x4, x
2
2 = x3, x

2
3 = x5, x

2
4 = x5, x

2
5 = 1

[x2, x1] = x3, [x3, x1] = x5 〉.

Here {x1, x2} is a minimal generating set, and we choose [x2, x1] = x3 and
x21 = x4 and [x3, x1] = x5 as definitions for x3, x4, and x5, respectively.

Lecture 2: how to compute a wpcp?
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Lower exponent-p series

Lower exponent p-series

The lower exponent-p series of a p-group G is

G = P0(G) > P1(G) > . . . > Pc(G) = 1

where each Pi+1(G) = [G,Pi(G)]Pi(G)p; the p-class of G is c.

Important properties

each Pi(G) is characteristic in G;

P1(G) = [G,G]Gp = Φ(G), and G/P1(G) ∼= Cdp with d = rank(G);

each section Pi(G)/Pi+1(G) is G-central and elementary abelian;

if G has p-class c, then its nilpotency class is at most c;

if θ is a homomorphism, then θ(Pi(G)) = Pi(θ(G));

G/N has p-class c if and only if Pc(G) ≤ N ;

weights: any wpcp on {a1, . . . , an} satisfies ai ∈ Pω(ai)(G) \ Pω(ai)+1(G).
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Lower exponent-p series

Example 11

Consider

G = D16 = Pc〈a1, a2, a3, a4 | a21 = 1, a22 = a3a4, a
2
3 = a4, a

2
4 = 1,

[a2, a1] = a3, [a3, a1] = a4〉.

Here we can read off:

P0(G) = G

P1(G) = [G,G]G2 = 〈a3, a4〉
P2(G) = [G,P1(G)]P1(G)2 = 〈a4〉
P3(G) = [G,P2(G)]P2(G)2 = 1

So G has 2-class 3.
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Computing a wpcp of a p-group

p-quotient algorithm3

Input: a p-group G = F/R = 〈x1, . . . , xn | R〉
Output: a wpcp of G

Top-level outline:

1 compute wpcp of G/P1(G) and epimorphism G→ G/P1(G), then iterate:

2 given wpcp of G/Pk(G) and epimorphism G→ G/Pk(G),
compute wpcp of G/Pk+1(G) and epimorphism G→ G/Pk+1(G);

For the second step, we use the so-called p-cover of G/Pk(G).

More general: a “p-quotient algorithm” computes a consistent wpcp of the
largest p-class k quotient (if it exists) of any finitely presented group.

3Historically: MacDonald (1974), Havas & Newman (1980), Newman & O’Brien (1996)
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Computing a wpcp of G/P1(G)
Note that G/P1(G) is elementary abelian.

Computing wpcp of G/P1(G)

Input: a p-group G = F/R = 〈x1, . . . , xn | R〉
Output: a wpcp of G/P1(G) and epimorphism θ : G→ G/P1(G)

Approach:

1 abelianise relations, take exponents modulo p, write these in matrix M

2 compute solution space of M over GF(p)

Then:

dimension d of solution space is rank of G, that is, G/P1(G) ∼= Cdp

generating set of G/P1(G) lifts to subset of given generators;

set G/P1(G) = Pc〈a1, . . . , ad | ap1 = . . . = apd〉 and define θ by

θ(xi) = ai for i = 1, . . . , d;

images of θ(xj) with j > d are determined accordingly.
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Computing a wpcp of G/P1(G)

Example 12

G = 〈x1, . . . , x6 | x106 , x1x2x3, x2x3x4, . . . , x4x5x6, x5x6x1, x1x6x2〉 and p = 2

Write coefficients of abelianised and mod-2 reduced equations as rows of matrix,
use row-echelonisation, and determine that solution space has dimension 2: 1 1 1 0 0 0

0 1 1 1 0 0
0 0 1 1 1 0
0 0 0 1 1 1
1 0 0 0 1 1
1 1 0 0 0 1

  
 1 0 0 0 1 1

0 1 0 0 1 0
0 0 1 0 0 1
0 0 0 1 1 1
0 0 0 0 0 0
0 0 0 0 0 0

 ;

Modulo P1(G), this shows that x1 = x5x6, x2 = x5, x3 = x6, x4 = x5x6, and
Burnside’s Basis Theorem implies that G = 〈x5, x6〉. Lastly, set

G/P1(G) = Pc〈a1, a2 | a21 = a22 = 1〉,
and define θ : G→ G/P1(G) via x5 7→ a1 and x6 7→ a2.
This determines θ(x1) = a1a2, θ(x2) = a1, θ(x3) = a2, and θ(x4) = a1a2.
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Compute wpcp for G/Pk+1(G) from that of G/Pk(G)
Given:

wpcp of d-generator p-group G/Pk(G) and epimorphism θ : G→ G/Pk(G)

Want:

wpcp of G/Pk+1(G) and epimorphism G→ G/Pk+1(G)

In the following:

H = G/Pk(G) and K = G/Pk+1(G) and Z = Pk(G)/Pk+1(G)

note that Z is elementary abelian, K-central, and K/Z ∼= H

Approach: Construct a covering H∗ of H such that every d-generator p-group L
with L/M ∼= H and M ≤ L central elementary abelian, is a quotient of H∗.

Thus, the next steps are:

1 define p-cover H∗ and determine a pcp of H∗;
2 make this presentation consistent;

3 construct K as quotient of H∗ by enforcing defining relations of G.
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p-covering group: definition

Theorem 13: p-covering group

Let H be a d-generator p-group; there is a d-generator p-group H∗ with:

H∗/M ∼= H for some central elementary abelian M EH∗;

if L is a d-generator p-group with L/Y ∼= H for some central elementary
abelian Y ≤ L, then L is a quotient of H∗.

The group H∗ is unique up to isomorphism.

Proof.
Let H = F/S with F free of rank d. Define H∗ = F/S∗ with S∗ = [S, F ]Sp.

Now S/S∗ is elementary abelian p-group, so H∗ is (finite) d-generator p-group.

Let L be as in the theorem, and let ψ : L→ H with kernel Y .
Let θ : F → H with kernel S. Since F is free, θ factors through L, that is,

θ : F
ϕ→ L

ψ→ H, and so ϕ(S) ≤ kerψ = Y . This implies that ϕ(S∗) = 1.
In conclusion, ϕ induces surjective map from H∗ = F/S∗ onto L.

If H∗ and H̃∗ are two such covers, then each is an image of the other.
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p-covering group: presentation

Given: a wpcp Pc〈a1, . . . , am | S〉 for H = G/Pk(G) ∼= F/S

Given:

and epimorphism θ : G→ H with θ(xi) = ai for i = 1, . . . , d

Want: a wpcp for H∗ ∼= F/S∗ where S∗ = [S, F ]Sp

Recall: each of ad+1, . . . , am occurs as right hand side of one relation in S;
write S = Sdef ∪ Snondef with Snondef = {s1, . . . , sq}.

Theorem 14

Using the previous notation, H∗ = Pc〈a1, . . . , am, b1, . . . , bq | S∗〉, where

S∗ = Sdef ∪ {s1b1, . . . , sqbq} ∪ {bp1, . . . , bpq}.

Note: M = 〈b1, . . . , bq〉EH∗ is elementary abelian, central, and H∗/M ∼= H.

(see Newman, Nickel, Niemeyer: “Descriptions of groups of prime-power order”, 1998)

In practice: fewer new generators are introduced.
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p-covering group: example
Example 15

If H = Pc〈a1, a2 | a21 = a22 = 1〉 ∼= C2 × C2, then

H∗ = Pc〈a1, a2, b1, b2, b3 | a21 = b1, a
2
2 = b2, [a1, a2] = b3, b

2
1 = b22 = b23 = 1〉;

indeed, H∗ ∼= (C4 × C2) : C4, thus we have found a consistent wpcp!

Example 16

If H = Pc〈a1, a2, a3 | a21 = a23 = 1, a22 = a3, [a2, a1] = a3〉 ∼= D8, then

H∗ = Pc〈a1, a2, a3, b1, . . . , b5 | T ∪ {b21, . . . , b25} 〉 with

T = {a21 = b1, a
2
2 = a3b2, a

2
3 = b3, [a2, a1] = a3, [a3, a1] = b4, [a3, a2] = b5};

this pcp has power exponents [2, 2, 2, 2, 2, 2, 2, 2].

However, H∗ ∼= (C8 × C2) : C4, so presentation is not consistent!

Next step: make the presentation of H∗ consistent.

Heiko Dietrich (heiko.dietrich@monash.edu) Computational aspects of finite p-groups ICTS, Bangalore 2016



p-Quotient Algorithm p-Class Algorithm Covering Group Example Burnside Problem

p-covering group: consistency algorithm
By Theorem 8, the presentation H∗ = Pc〈u1, . . . , um+q | S∗〉 with
(u1, . . . , um+q) = (a1, . . . , am, b1, . . . , bq) is consistent if and only if

uk(ujui) = (ukuj)ui (1 ≤ i < j < k ≤ m+ q)

(up
j )ui = up−1

j (ujui) and uj(u
p
i ) = (ujui)u

p−1
i (1 ≤ i < j ≤ m+ q)

uj(u
p
j ) = (up

j )uj (1 ≤ j ≤ m+ q).

Consistency Algorithm4: find consistent presentation for H∗

If each pair of words in the above “consistency checks” collects to the same
normal word, then the presentation is consistent.

Otherwise, the quotient of the two different words obtained from one of these
conditions is formed and equated to the identity word: this gives a new
relation which holds in the group.

The pcp for H is consistent, so any new relation is an equation in the
elementary abelian subgroup M generated by the new generators
{b1, . . . , bq}, which implies that one of these generators is redundant.

4Historically: Wamsley (1974), Vaughan-Lee (1984)
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p-covering group: consistency algorithm

By Theorem 8, the presentation H∗ = Pc〈u1, . . . , um+q | S∗〉 with
(u1, . . . , um+q) = (a1, . . . , am, b1, . . . , bq) is consistent if and only if

uk(ujui) = (ukuj)ui (1 ≤ i < j < k ≤ m+ q)

(up
j )ui = up−1

j (ujui) and uj(u
p
i ) = (ujui)u

p−1
i (1 ≤ i < j ≤ m+ q)

uj(u
p
j ) = (up

j )uj (1 ≤ j ≤ m+ q).

Example 17

Consider G = Pc〈u1, u2, u3 | u21 = u2, u
2
2 = u3, u

2
3 = 1, [u2, u1] = u3〉.

The last test applied to u1 yields

u31 = (u21)u1 = u2u1 = u1u2u3 and u31 = u1(u21) = u1u2,

so u3 = 1 in G, hence G = Pc〈u1, u2 | u21 = u2, u
2
2 = 1〉 ∼= C4.

Heiko Dietrich (heiko.dietrich@monash.edu) Computational aspects of finite p-groups ICTS, Bangalore 2016



p-Quotient Algorithm p-Class Algorithm Covering Group Example Burnside Problem

Construct K from cover H∗ of H

So what have we got so far...

p-group G = F/R = 〈x1, . . . , xn | R〉
consistent wpcp of H = G/Pk(G) = Pc〈a1, . . . , am | S〉
epimorphism θ : G→ H with θ(xi) = ai for i = 1, . . . , d

consistent wpcp of cover H∗ = Pc〈a1, . . . , am, b1, . . . , bq | S∗〉;
note that H∗/M ∼= H where M = 〈b1, . . . , bq〉

Want:

consistent wpcp of K = G/Pk+1(G) and epimorphism G→ G/Pk+1(G)

Know:

K/Z ∼= H where Z = Pk(G)/Pk+1(G) is elementary abelian, central

K is quotient of H∗

Idea:

construct K as quotient of H∗: add relations enforced by G to S∗
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Construct K from cover H∗ of H
So what have we got so far...

p-group G = F/R = 〈x1, . . . , xn | R〉
consistent wpcp of H = G/Pk(G) = Pc〈a1, . . . , am | S〉
epimorphism θ : G→ H with θ(xi) = ai for i = 1, . . . , d

consistent pcp of cover H∗ = Pc〈a1, . . . , am, b1, . . . , bq | S∗〉;
note that H∗/M ∼= H where M = 〈b1, . . . , bq〉

Enforcing relations of G:

know that K = G/Pk+1(G) is quotient of H∗

lift θ : G→ H to θ̂ : F → H∗ such that θ̂(xi) = ai for i = 1, . . . , d

for every relator r ∈ R compute nr = θ̂(r) ∈M ;
let L be the subgroup of M generated by all these nr

by von Dyck’s Theorem H∗/L→ K and G→ H∗/L are surjective;
since K is the largest p-class k + 1 quotient of G, we deduce K = H∗/L

Finally: find consistent wpcp of K = H∗/L and get epimorphism G→ K
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Big example: p-quotient algorithm in action
Let G = 〈x, y | [[y, x], x] = x2, (xyx)4, x4, y4, (yx)3y = x〉 and p = 2.

First round:

compute G/P1(G) using abelianisation and row-echelonisation:

obtain H = G/P1(G) ∼= Pc〈a1, a2 | a21 = a22 = 1〉
and epimorphism θ : G→ H, which is defined by (x, y)→ (a1, a2).

construct covering of H by adding new generators and tails:

H∗ = Pc〈a1, . . . , a5 | a21 = a3, a
2
2 = a4, [a2, a1] = a5, a

2
3 = a24 = a25 = 1〉

the consistency algorithm shows that this presentation is consistent

evaluate relations of G in H∗:

1 = [[a2, a1], a1] = θ̂([[y, x], x]) = θ̂(x2) = a21 = a3 forces a3 = 1

(xyx)4, x4, y4 impose no conditions

a1a3 = θ̂((yx)3y) = θ̂(x) = a1 also forces a3 = 1

construct G/P2(G) as H∗/〈a3〉; after renaming a4, a5:

G/P2(G) ∼= Pc〈a1, . . . , a4 | a21 = 1, a22 = a4, [a2, a1] = a3, a
2
3 = a24 = 1〉

and epimorphism G→ G/P2(G) defined by (x, y)→ (a1, a2).
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Big example: p-quotient algorithm in action
G/P2(G) = Pc〈a1, . . . , a4 | a21 = 1, a22 = a4, [a2, a1] = a3, a

2
3 = a24 = 1〉

Second round:
construct covering of H = G/P2(G) by adding new generators and tails:
H∗ = Pc〈a1, . . . , a12 | a21 = a12, a

2
2 = a4, a

2
3 = a11, a

2
4 = a10,

[a2, a1] = a3, [a3, a1] = a5, [a3, a2] = a6, [a4, a1] = a7,

[a4, a2] = a8, [a4, a3] = a9, a
2
5 = . . . = a212 = 1〉

the consistency algorithm shows only the following inconsistencies:

a2(a2a2) = a2a4 and (a2a2)a2 = a4a2 = a2a4a8 =⇒ a8 = 1a8 = 1a8 = 1

a2(a1a1) = a2a12 and (a2a1)a1 = a1a2a3a1 = . . . = a2a5a11a12 =⇒ a5a11 = 1a5a11 = 1a5a11 = 1

a2(a2a1) = a1a
2
2a

2
3a6 = a1a4a6a11 and (a2a2)a1 = a1a4a7 =⇒ a6a7a11 = 1a6a7a11 = 1a6a7a11 = 1

a3(a2a2) = a3a4 and (a3a2)a2 = a2a3a6a2 = a22a3a
2
6 = a3a4a9 =⇒ a9 = 1a9 = 1a9 = 1

removing redundant gens (and renaming), we obtain the consistent wpcp

H∗ = Pc〈a1, . . . , a8 | a21 = a8, a
2
2 = a4, a

2
3 = a7, a

2
4 = a6, a

2
5 = . . . = a28 = 1

[a2, a1] = a3, [a3, a1] = a7, [a3, a2] = a5a7, [a4, a1] = a5〉
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Big example: p-quotient algorithm in action

Still second round:

G = 〈x, y | [[y, x], x] = x2, (xyx)4, x4, y4, (yx)3y = x〉 and p = 2;

epimorphism θ : G→ H onto H = G/P2(H) defined by (x, y)→ (a1, a2)

H∗ = Pc〈a1, . . . , a8 | a21 = a8, a
2
2 = a4, a

2
3 = a7, a

2
4 = a6, a

2
5 = . . . = a28 = 1

[a2, a1] = a3, [a3, a1] = a7, [a3, a2] = a5a7, [a4, a1] = a5〉
Evaluate relations of G in H∗:

a7 = [[a2, a1], a1] = θ̂([[y, x], x]) = θ̂(x2) = a21 = a8 forces a7 = a8

(xyx)4 forces a6 = 1; x4 and y4 impose no condition

θ̂((yx)3y) = θ̂(x) forces a7a8 = 1

Now construct G/P3(G) as H∗/〈a7a8, a6〉; after renaming:

G/P3(G) = Pc〈a1, . . . , a6 | a21 = a6, a
2
2 = a4, a

2
3 = a6, a

2
4 = 1, a25 = a26 = 1,

[a2, a1] = a3, [a3, a1] = a6, [a3, a2] = a5a6, [a4, a1] = a5〉

and the epimorphism G→ G/P3(G) is defined by (x, y)→ (a1, a2).
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Big example: p-quotient algorithm in action

In conclusion:

We started with

G = 〈x, y | [[y, x], x] = x2, (xyx)4, x4, y4, (yx)3y = x〉

and computed G/P3(G) as

Pc〈a1, . . . , a6 | a21 = a6, a
2
2 = a4, a

2
3 = a6, a

2
4 = a25 = a26 = 1,

[a2, a1] = a3, [a3, a1] = a6, [a3, a2] = a5a6, [a4, a1] = a5〉

with epimorphism G→ G/P3(G) defined by (x, y)→ (a1, a2).

One can check that |G| = |G/P3(G)| = 26, hence G ∼= G/P3(G).

In particular, we have found a consistent wpcp for G.

In general: if our input group is a finite p-group, then the p-quotient algorithm
constructs a consistent wpcp of that group.
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Motivation and Application: Burnside problem

Burnside Problems

Generalised Burnside Problem (GBP), 1902:
Is every finitely generated torsion group finite?

Burnside Problem (BP), 1902:
Let B(d, n) be the largest d-generator group with gn = 1 for all g ∈ G.
Is this group finite? If so, what is its order?

Restricted Burnside Problem (RBP), ∼1940:
What is order of largest finite quotient R(d, n) of B(d, n), if it exists?

Golod-Šafarevič (1964): answer to GBP is “no”;
(cf. Ol’shanskii’s Tarski monster)

Various authors: B(d, n) is finite for n = 2, 3, 4, 6, but in no other cases with
d > 1 is it known to be finite; is B(2, 5) finite?

Higman-Hall (1956): reduced (RBP) to prime-power n.

Zel’manov (1990-91): R(d, n) always exists! (Fields medal 1994)
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Motivation and Application: Burnside problem

Burnside groups:

B(d, n) = 〈x1, . . . , xd | gn = 1 for all words g in x1, . . . , xn〉
R(d, n) largest finite quotient of B(d, n); exists by Zel’manov

Recall: the p-quotient algorithm computes a consistent wpcp of the largest
p-class k quotient (if it exists) of any finitely presented group.

Implementations of the p-quotient algorithm have been used to determine the
order and compute pcp’s for various of these groups.

Group Order Authors

B(3, 4) 269 Bayes, Kautsky & Wamsley (1974)

R(2, 5) 534 Havas, Wall & Wamsley (1974)

B(4, 4) 2422 Alford, Havas & Newman (1975)

R(3, 5) 52282 Vaughan-Lee (1988); Newman & O’Brien (1996)

B(5, 4) 22728 Newman & O’Brien (1996)

R(2, 7) 720416 O’Brien & Vaughan-Lee (2002)
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Conclusion Lecture 2

Things we have discussed in the second lecture:

lower exponent-p series, p-class

p-quotient algorithm

p-cover H∗ (definition, pcp, consistent pcp)

application: Burnside problems
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p-group generation

Go to p-Quotient Algorithm

Go to Classification
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Conclusion Lecture 2

Things we have discussed in the second lecture:

the lower exponent-p series of a group G of p-class c is

G = P0(G) > P1(G) > . . . > Pc(G) = 1

where Pi+1(G) = [G,Pi(G)]Pi(G)p; in particular, P1(G) = Φ(G)

p-quotient algorithm: construct consistent wpcp of largest p-class c quotient
of a finitely presented group (if it exists)

if H has rank d and H ∼= F/R with F free of rank d, then the p-cover H∗ is
isomorphic to F/R∗ where R∗ = [F,R]Rp

application: Burnside problems

Today: the p-group generation algorithm!
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p-group generation: descendants

Idea: Constructing new p-groups from old ones!

Descendants of p-groups

Let G be a d-generator p-group of p-class c.
A descendant of G is a d-generator p-group H with H/Pc(H) ∼= G; it is an
immediate descendant if H has p-class c+ 1, that is, Pc(H) > Pc+1(H) = 1.

Example 18

The group G = C2 × C2 has 2-class c = 1.

The 2-class of D8 = 〈x1, x2, x3 | x21, x22 = x3, x
2
3, [x2, x1] = x3〉 is 2.

Since D8/P1(D8) ∼= G, the group D8 is an immediate descendant of G.

The group D16 has 2-class 3 and satisfies D16/P1(D16) ∼= C2 × C2.
Thus D16 is a descendant of G, but not an immediate descendant.

Every p-group K of p-class c > 1 is an immediate descendant of K/Pc−1(K);
if c = 1, then K ∼= Cdp is elementary abelian.
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p-group generation: p-covering

Given: a d-generator p-group G of p-class c.
Want: list of all immediate descendants H of G (up to isomorphism)
Fact: each H/Pc(H) ∼= G and Pc(H) is H-central elementary abelian.

Recall Theorem 13: If H is a d-generator p-group with H/Z ∼= G for some
central elementary abelian Z ≤ H, then H is a quotient of the p-cover G∗.

Theorem 19

Every immediate descendant of G is a quotient of the p-cover G∗.

In the following we discuss the p-group generation algorithm:

p-group generation algorithm

Input: a p-group G and description of its automorphism group
Output: wpcp’s of all immediate descendants of G, up to isomorphism,

Output:

and a description of their automorphism groups

Descriptions of the algorithm in the literature: Newman (1977), O’Brien (1999)
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p-group generation: allowable subgroups

In the following: G = F/R with p-class c, and G∗ = F/R∗ with R∗ = [R,F ]Rp.

Problem: What quotients of G∗ are immediate descendants of G?

Definition

The p-multiplicator of G is the kernel of G∗ → G, that is, R/R∗.

The nucleus of G is Pc(G
∗); note that Pc(G

∗) ≤ R/R∗.
If H is an immediate descendant, then there is an epi G∗ → H whose kernel
lies in R/R∗. An allowable subgroup is a subgroup Z < R/R∗ such that
G∗/Z is an immediate descendant of G.

The next lemma characterises allowable subgroups:

Lemma 20

A subgroup Z < R/R∗ is allowable if and only if ZPc(G
∗) = R/R∗.

Thus: Z < R/R∗ is allowable if and only if it supplements the nucleus.

Heiko Dietrich (heiko.dietrich@monash.edu) Computational aspects of finite p-groups ICTS, Bangalore 2016



p-Group Generation Algorithm Descendants Allowable Subgroups Isomorphism Problem Algorithm Example

p-group generation: allowable subgroups

Recall: G = F/R with p-class c, and G∗ = F/R∗ with R∗ = [R,F ]Rp.

Lemma 20

A subgroup Z < R/R∗ is allowable if and only if ZPc(G
∗) = R/R∗.

Proof.
If Z = M/R? is allowable, then F/M is an immediate descendant, and so
G ∼= (F/M)/(Pc(F )M/M). We also know that G = F/R ∼= (F/M)/(R/M) by
the isomorphism theorem. Since Pc(G) = Pc(F )R/R = 1, we have Pc(F )M ≤ R.
Together, it follows that R = Pc(F )M , and so R/R? = Pc(G

∗)Z, as claimed.

Conversely, if Z = M/R? satisfies R/R∗ = ZPc(G
∗) = MPc(F )/R∗, then

R = MPc(F ); factoring out M yields R/M = Pc(F )M/M .
This shows that H = G∗/Z = F/M satisfies Pc(H) = Pc(F )M/M = R/M , so
H/Pc(H) = F/R = G and H is immed. desc. since Pc(H) > Pc+1(H) = 1.
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p-group generation: allowable subgroups

Example 21

The group G = D16 has p-class c = 3 and 2-covering

G∗ = Pc〈 a1, . . . , a7 | a21 = a6, a
2
2 = a3a4a7, a

2
3 = a4a5, a

2
4 = a5,

[a2, a1] = a3, [a3, a1] = a4, [a4, a1] = a5,

a25 = a26 = a27 = 1〉.

The multiplicator is 〈a5, a6, a7〉 ∼= C3
2 ; the nucleus is Pc(G

∗) = 〈a5〉.
The subgroups 〈a6, a7〉, 〈a5a6, a7〉, 〈a6, a5a7〉 are allowable and the corresponding
immediate descendants have order 32.

The subgroup 〈a5a6, a5a7〉 is also allowable, but the resulting quotient is
isomorphic to the quotient of G∗ by 〈a6, a5a7〉.

Considering the factor groups of G∗ by all allowable subgroups, a complete list of
immediate descendants is obtained; this list usually contains isomorphic groups.
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p-group generation: isomorphism problem

Recall: G = F/R with p-cover G∗ = F/R∗ and multiplicator R/R∗.

Equivalence of allowable subgroups

Two allowable subgroups U/R∗ and V/R∗ are equivalent if the corresponding
immediate descendants F/U and F/V are isomorphic.

This definition of “equivalence” is useful . . .

. . . only because the equivalence relation can be given a different characterisation
by using the automorphism group of G.
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p-group generation: isomorphism problem

Extended automorphism

Let α ∈ Aut(G); suppose G = F/R is generated by a1, a2, . . . , ad.
For i = 1, . . . , d, let xi, yi ∈ F such that ai = xiR and α(ai) = yiR for all i.
Define α∗ : G∗ → G∗ by α∗(xiR∗) = yiR

∗ for all i.

Lemma 22

If α ∈ Aut(G), then α∗ ∈ Aut(G∗) is an extended automorphism.
It is not uniquely defined by α, but its restriction to R/R∗ is.

Proof [Sketch].
First show that α∗ is a well-defined homomorphism; let g = w(x1, . . . , xd) ∈ F :
If g ∈ R, then 1R = α(gR) = w(y1, . . . , yd)R, so w(y1, . . . , yd) ∈ R.
So if g ∈ R∗, then w(y1, . . . , yd) ∈ R∗; recall R∗ = [F,R]Rp.
The hom α∗ is surjective: G∗ = 〈y1R∗, . . . , ydR∗〉 since R/R∗ ≤ Φ(G∗).

Two extensions of α differ only by elements in R/R∗, and words in R are
products of p-th powers and commutators. Since R/R∗ is elementary abelian and
central, the restriction of α∗ to R/R∗ is uniquely defined by α.
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p-group generation: isomorphism problem

Lemma 23

Let G = F/R be as before, and let U/R∗ and V/R∗ be allowable subgroups.
Then F/U ∼= F/V if and only if α∗(U/R∗) = V/R∗ for some α ∈ Aut(G).

Proof [Sketch].
“⇒”. Let ϕ : F/U → F/V be an isomorphism. Since F/U is an immed. desc.,
(F/U)/Pc(F/U) = G, and so Pc(F/U) = R/U ; similarly, Pc(F/V ) = R/V , and
so ϕ(R/U) = R/V . Thus ϕ induces α ∈ Aut(G) with extension α∗ ∈ Aut(G∗).
Now we show that α∗(U/R∗) = V/R∗: if g = w(x1, . . . , xd) ∈ U , then

1V = ϕ(gU) = w(ϕ(x1U), . . . , ϕ(xdU)) = w(y1V, . . . , ydV ) = w(y1, . . . , yd)V,

which implies α∗(gR∗) = w(y1, . . . , yd)R
∗ ∈ V/R∗, and so α∗(U/R∗) = V/R∗.

“⇐”. If H is a group, N EH, and γ ∈ Aut(H), then H/N ∼= H/γ(N).
This shows that if α∗ ∈ Aut(G∗) maps U/R∗ to V/R∗, then F/U ∼= F/V .

Via α∗, every α ∈ Aut(G) yields a unique permutation π(α) of allowable subgrps.
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p-group generation: automorphisms
Given: G = F/R and immediate desc. H = F/M for some allowable M/R∗

Want: automorphisms of H, that is, isomorphisms F/M → F/M

Recall: every α ∈ Aut(G) yields a permutation π(α) of allowable subgrps.

Let Σ be the stabiliser of M/R∗ under the action of Aut(G), that is,

Σ = 〈ζ ∈ Aut(G) | π(ζ) stabilises M/R∗〉.
Use Σ to compute

S = 〈ζ∗|F/M | ζ ∈ Σ〉 ≤ Aut(H),

and determine a generating set for

T = 〈β ∈ Aut(H) | β|G = idG〉.

Theorem 24

Using the previous notation, Aut(H) = 〈S, T, Inn(H)〉.
(see O’Brien, 1999)

Heiko Dietrich (heiko.dietrich@monash.edu) Computational aspects of finite p-groups ICTS, Bangalore 2016



p-Group Generation Algorithm Descendants Allowable Subgroups Isomorphism Problem Algorithm Example

p-group generation: the algorithm

p-group-generation(G,A, s)

Input: group G = F/R of order pn, its automorphism group A, integer s ∈ N
Output: immediate descendants of G, up to isomorphism, of order pn+s,

Output:

and their automorphism groups

1 construct consistent wpcp of covering G∗ = F/R∗

2 for each generator α of A do

3 compute extension α∗

4 compute permutation π(α) of allowable subgroups of index ps in R/R∗

5 compute orbits of these allowable subgroups under the action of all π(α)

6 for each orbit representative Z = M/R∗ do

7 compute a wpcp of the immediate descendant H = G∗/Z ∼= F/M

8 compute generators of the automorphism group of H
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p-group generation: example
Consider G = Pc〈 a1, a2 | a21 = a22 = 1〉 with 2-covering

G∗ = Pc〈a1, . . . , a5 | a21 = a4, a
2
2 = a5, [a1, a2] = a3, a

2
3 = a24 = a25 = 1〉.

The multiplicator and nucleus coincide: M = 〈a3, a4, a5〉 = P1(G∗).

Thus: every proper subgroup of M is allowable.

Note that Aut(G) ∼= GL2(2), with generators and extensions

α1 : (a1, a2) 7→ (a1a2, a2) α∗1 : (a1, a2, a3, a4, a5) 7→ (a1a2, a2, a3, a3a4a5, a5)

α2 : (a1, a2) 7→ (a2, a1) α∗2 : (a1, a2, a3, a4, a5) 7→ (a2, a1, a3, a5, a4).

For example, observe that

α∗1(a3) = α∗1([a1, a2]) = [a1a2, a2] = a3

α∗1(a4) = α∗1(a21) = (a1a2)2 = a21a
2
2a3 = a3a4a5

α∗1(a5) = α∗1(a22) = a22 = a5
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p-group generation: example
Consider G = Pc〈 a1, a2 | a21 = a22 = 1〉 with 2-covering

G∗ = Pc〈a1, . . . , a5 | a21 = a4, a
2
2 = a5, [a1, a2] = a3, a

2
3 = a24 = a25 = 1〉.

The multiplicator and nucleus coincide: M = 〈a3, a4, a5〉 = P1(G∗).

Thus: every proper subgroup of M is allowable.

Note that Aut(G) ∼= GL2(2), with generators and extensions

α1 : (a1, a2) 7→ (a1a2, a2) α∗1 : (a1, a2, a3, a4, a5) 7→ (a1a2, a2, a3, a3a4a5, a5)

α2 : (a1, a2) 7→ (a2, a1) α∗2 : (a1, a2, a3, a4, a5) 7→ (a2, a1, a3, a5, a4).

Immediate descendants of G = C2 × C2 of order 8:

There are 7 allowable subgroups of index 2 in M (that is, of rank 2), namely

〈a4, a5〉, 〈a4, a3a5〉, 〈a3a4, a5〉, 〈a3, a5〉, 〈a3, a4a5〉, 〈a3, a4〉, 〈a3a4, a3a5〉

There are 3 orbits of allowable subgroups induced by α∗1 and α∗2:

{〈a4, a5〉, 〈a4, a3a5〉, 〈a3a4, a5〉}, {〈a3a4, a3a5〉}, {〈a3, a5〉, 〈a3, a4a5〉, 〈a3, a4〉}
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p-group generation: example

Immediate descendants of G = C2 × C2 of order 8

Recall that

G∗ = Pc〈a1, . . . , a5 | a21 = a4, a
2
2 = a5, [a1, a2] = a3, a

2
3 = a24 = a25 = 1〉

and allowable subgroups of rank 2 are

{〈a4, a5〉, 〈a4, a3a5〉, 〈a3a4, a5〉}, {〈a3a4, a3a5〉}, {〈a3, a5〉, 〈a3, a4a5〉, 〈a3, a4〉}.

Choose one rep from each orbit and factor it from G∗ to obtain immediate
descendants:

Pc〈 a1, a2, a3 | a21 = a22 = a23, [a2, a1] = a3 〉 ∼= D8

Pc〈 a1, a2, a3 | a21 = a3, a
2
2 = a3, a

2
3 = 1, [a2, a1] = a3 〉 ∼= Q8

Pc〈 a1, a2, a4 | a21 = a4, a
2
2 = a24 = 1〉 ∼= C2 × C4
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p-group generation: example

Immediate descendants of G = C2 × C2 of order 16

Recall that

G∗ = Pc〈a1, . . . , a5 | a21 = a4, a
2
2 = a5, [a1, a2] = a3, a

2
3 = a24 = a25 = 1〉.

Allowable subgroups of index 4 are 〈a3〉, 〈aδ3aγ4a5〉, 〈aζ3a4〉, with δ, γ, ζ ∈ {0, 1}.
The orbits induced by α∗1 and α∗2 are

{〈a3〉}, {〈a5〉, 〈a3a4a5〉, 〈a4〉}, {〈a4a5〉, 〈a3a5〉, 〈a3a4〉}.

Choose one rep from each orbit to obtain 3 immediate descendants of order 16.
Get C4 × C4 and C2 n (C2 × C4) and C4 n C4, for example,

G∗/〈a3〉 = Pc〈 a1, a2, a4, a5 | a21 = a4, a
2
2 = a5, a

2
4 = a25 = 1〉 ∼= C4 × C4.

Immediate descendants of G = C2 × C2 of order 32

There is one immediate descendant of order 25, namely G∗.
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p-group generation: practical issues

Central problem: number of allowable subspaces (and size of orbits)

Example: The immediate descendants of G = Cdp of order pd+s have p-class 2.
For this group, M = R/R∗ = P1(G∗) has rank m = d(d+ 1)/2;
and each of the O(p(m−s)s) subspaces of dim m− s is allowable.

Approach: exploit characteristic structure.
Each α ∈ Aut(G) acts on M ≤ G∗ via α∗ ∈ Aut(G∗); so M is Aut(G)-module.
In the example, M = P1(G∗) = (G∗)2(G∗)′ is a characteristic decomposition.
In general, identify characteristic submodules, then process chain of submodules.

More comments on practical issues: see O’Brien (1999)
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Classifying p-groups

Go to p-Group Generation

Go to Isomorphisms
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GNU: group number

How many groups of order pn exist?

The number gnu(n) of groups of order n (up to isomorphism) has been
studied in detail5; we recall a few bounds:

Pyber (1993): gnu(n) ≤ n(2/27+o(1))µ(n)2 ,
where µ(n) is largest exponent in the prime-power factorisation of n.
Idea: count choices for Sylow subgroups, Fitting subgroup, quotients, extensions,. . .

Higman (1960): gnu(pn) ≥ p2/27(n3−6n2)

Idea: count groups of p-class 2

Sims (1965), Newman & Seeley (2007): gnu(pn) ≤ p2n3/27+O(n5/3)

Idea: enumerate presentations which define groups of order pn

Trivial bound: gnu(pn) ≤ p(n
3−n)/6

In conclusion: p(2/27)n
3−O(n2) ≤ gnu(pn) ≤ p(2/27)n3+O(n5/3) as n→∞.

5Blackburn, Neuman, Venkataraman “Enumeration of finite groups”, 2007
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GNU: some 2-groups

Besche, Eick & O’Brien (2001) used 2-group generation:

order #

1 1

2 1

4 2

8 5

16 14

32 51

64 267

order #

128 2,328

256 56,092

512 10,494,213

1024 49,487,365,422

2048 >1,774,274,116,992,170

Number of groups of order ≤ 2000: 49,910,529,484
Number of groups of order 210: 49,487,365,422
Number of groups of order 210 and class 2: 48,803,495,722

Folklore Conjecture

Almost all groups are 2-groups of 2-class 2.
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GNU: p-groups of small order
Number of groups of order pk, for k = 1, 2, . . . , 6:

# \ p# \ p# \ p 2 3 ≥ 5≥ 5≥ 5

p 1 1 1

p2 2 2 2

p3 5 5 5

p4 14 15 15

p5 51 67 X

p6 267 504 Y

where

X = 2p+ 61 + 2 gcd(p− 1, 3) + gcd(p− 1, 4)

Y = 3p2 + 39p+ 344 + 24 gcd(p− 1, 3) + 11 gcd(p− 1, 4) + 2 gcd(p− 1, 5)

Order dividing p4: Cole, Glover, Hölder, Young (all ∼ 1893)

Order p5: Bagnera, Miller, de Séguier, James (1898-1980)

Order p6: many faulty classifications;

Order p6:

eventually Newman, O’Brien, Vaughan-Lee (2004)

Heiko Dietrich (heiko.dietrich@monash.edu) Computational aspects of finite p-groups ICTS, Bangalore 2016



Classification by Order GNU Small p-Groups PORC Conjecture

GNU: p-groups of small order

Number of groups of order p7: O’Brien & Vaughan-Lee (2005) computed

# \ p# \ p# \ p 2 3 5 ≥ 7≥ 7≥ 7

p7 2, 328 9, 310 34, 297 Z

where

Z = 3p5 + 12p4 + 44p3 + 170p2 + 707p+ 2455

+(4p2 + 44p+ 291) gcd(p− 1, 3) + (p2 + 19p+ 135) gcd(p− 1, 4)

+(3p+ 31) gcd(p− 1, 5) + 4 gcd(p− 1, 7) + 5 gcd(p− 1, 8) + gcd(p− 1, 9)

Approach for n = 5, 6, 7:

For p < n use p-group generation.

For p ≥ n use Baker-Campbell-Hausdorff formula and Lazard correspondence
between category of nilpotent Lie rings of order pn and category of p-groups of
order pn. Use analogue of p-group generation algorithm to classify the Lie rings.
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GNU: PORC conjecture6

PORC Conjecture (Higman 1960)

For n fixed, gnu(pn) is Polynomial On Residue Classes.

That is, there exists m ∈ N and polynomials f0, f1, . . . , fm−1 such that

gnu(pn) = fp mod m(n).

Higman (1960): # groups of order pn and p-class 2 is PORC.

Evseev (2008): # groups of order pn whose Frattini subgroup is central is PORC.

Vaughan-Lee (2015): # groups of order p8 and exponent p is PORC.

6For a survey see Vaughan-Lee “Graham Higman’s PORC Conjecture” (2012)
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Conclusion Lecture 3

Things we have discussed in the third lecture:

(immediate) descendants

p-group generation algorithm

p-cover, nucleus, multiplicator, allowable subgroups, extended auts

automorphism groups of immediate descendants

the group number gnu for group order p5, p6, p7

PORC conjecture
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Isomorphism testing

Go to Classifications

Go to Automorphisms
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Conclusion Lecture 3

Things we have discussed in the third lecture:

(immediate) descendants

p-group generation algorithm

p-cover, nucleus, multiplicator, allowable subgroups, extended auts

automorphism groups of immediate descendants

the group number gnu for group order p5, p6, p7

PORC conjecture
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Resources

Isomorphism testing for p-groups
E. A. O’Brien
J. Symb. Comp. 17, 133-147 (1994)
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Standard Presentations

Problem: Decide whether two p-groups are isomorphic.

Standard presentation

For a p-group G use methods from the p-quotient and p-group generation
algorithms to construct a standard pcp (std-pcp) for G, such that G ∼= H if and
only if G and H have the same std-pcp.

Example: For each j = 1, . . . , p− 1 the presentation

Pc〈a1, a2 | ap1 = aj2, a
p
2 = 1〉

is a wpcp describing Cp2 ; as a std-pcp one could choose

Pc〈a1, a2 | ap1 = a2, a
p
2 = 1〉.

Similarly, a std-pcp for Cdp is Pc〈a1, . . . , ad | ap1 = . . . = apd = 1〉.
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Isomorphism test: computing std-pcp’s
Let G be d-generator p-group of p-class c.
Std-pcp of G/P1(G) is Pc〈a1, . . . , ad | ap1 = . . . = apd = 1〉.
Suppose H ∼= G/Pk(G) with k < c is defined by std-pcp; have θ : G→ G/Pk(G).

Find std-pcp of G/Pk+1(G) using p-group generation:

The p-group generation algorithm constructs immediate descendants of H.
Among these immediate descendants is K ∼= G/Pk+1(G). Proceed as follows:

let H ∼= F/R (defined by std-pcp) and H∗ ∼= F/R∗;

evaluate relations in H∗ to get allowable M/R∗ with F/M ∼= G/Pk+1(G);

recall: α ∈ Aut(H) acts as α∗ ∈ Aut(H∗) on allowable subgroups;
two allowable U/R∗ and V/R∗ are in same Aut(H)-orbit iff F/U ∼= F/V ;
the choice of orbit rep determines the pcp obtained, and two elements from
the same orbit determine different pcp’s for isomorphic groups;

associate with each allowable subgroup a unique label: a positive integer
which runs from one to the number of allowable subgroups;

let M/R∗ be the element in the Aut(H)-orbit of M/R∗ with label 1.

Now K = F/M is isomorphic to G/Pk+1(G); the pcp defining K is “standard”.
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Isomorphism test: example of std-pcp
The group

G = 〈x, y | (xyx)3, x27, y27, [x, y]3, (xy)27, [y, x3], [y3, x]〉;

has order 37, rank 2, and 3-class 3; let S1 be the set of relators.

G/P1(G) has std-pcp H = Pc〈a1, a2 | a31 = a32 = 1〉,
and we have an epimorphism θ : G→ H with x, y 7→ a1, a2.

use the p-quotient algorithm to construct covering

H∗ = Pc〈 a1, . . . , a5 | [a2, a1] = a3, a
3
1 = a4, a

3
2 = a5, a

3
3 = a34 = a35 = 1 〉.

evaluate S1 in H∗ via θ̂ to determine the allowable subgroup U/R∗ = 〈a24a5〉
which must be factored from H∗ to obtain G/P2(G), that is, F/U is
isomorphic to G/P2(G) with wpcp

Pc〈a1, . . . , a4 | [a2, a1] = a3, a
3
1 = a32 = a4, a

3
3 = a34 = 1〉.
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Isomorphism test: example of std-pcp
Recall:

H = Pc〈a1, a2 | a31 = a32 = 1〉;
H∗ = Pc〈 a1, . . . , a5 | [a2, a1] = a3, a

3
1 = a4, a

3
2 = a5, a

3
3 = a34 = a35 = 1 〉,

with 3-multiplicator M = 〈a3, a4, a5〉.
A generating set for the automorphism group Aut(H) ∼= GL2(3) is

α1 : a1 7−→ a1a
2
2, α2 : a1 7−→ a1, α3 : a1 7−→ a21

a2 7−→ a21a
2
2 a2 7−→ a21a2 a2 7−→ a2

Note that

α∗1(a3) = α∗1([a2, a1]) = [a21a
2
2, a1a

2
2] = . . . = a3

α∗1(a4) = α∗1(a31) = (a1a
2
2)3 = . . . = a4a

2
5

α∗1(a5) = α∗1(a32) = (a21a
2
2)3 = . . . = a24a

2
5

so the matrices representing the action of α∗i on M are(
1 0 0
0 1 2
0 2 2

)
,

(
1 0 0
0 1 0
0 2 1

)
,
(

2 0 0
0 2 0
0 0 1

)
.
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Isomorphism test: example of std-pcp

Recall that

H∗ = Pc〈 a1, . . . , a5 | [a2, a1] = a3, a
3
1 = a4, a

3
2 = a5, a

3
3 = a34 = a35 = 1 〉,

and G/P2(G) ∼= F/U for the subspace U/R∗ = 〈a4a25〉, which is 〈(0, 1, 2)〉
The Aut(H)-orbit containing U/R∗ is

{〈a5〉, 〈a4a5〉, 〈a24a5〉, 〈a4〉}.

The orbit rep with label 1 is . . . Ū/R∗ = 〈a5〉.
Factor H∗ by 〈a5〉 to obtain the std-pcp for G/P2(G) as

K = Pc〈a1, . . . , a4 | [a2, a1] = a3, a
3
1 = a4, a

3
1 = . . . = a34 = 1〉.

Recall that U/R∗ was found by evaluating the relations S1 of G.
But: for the std-pcp we factored out Ū/R∗ = δ(U/R∗) for some δ ∈ Aut(H∗).
For the next iteration we need to modify the set of relations S1 accordingly.
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Isomorphism test: example of std-pcp

An extended automorphism which maps U/R∗ = 〈a4a25〉 to Ū/R∗ = 〈a5〉 is

δ : a1 7−→ a1a2a3a4 = a1a2[a2, a1]a31
a2 7−→ a1a

2
2

Apply δ to S1 = {(xyx)3, x27, y27, [x, y]3, . . .} to obtain

S2 = {(xy[y, x]x3xy2xy[y, x]x3)3, (xy[y, x]x3)27, (xy2)27, . . .};

it follows that G = 〈x, y | S1〉 ∼= 〈x, y | S2〉, see O’Brien 1994.

Now iterate with G ∼= 〈x, y | S2〉 and the std-pcp of K ∼= G/P2(G) to
compute the std-pcp of G/P3(G) ∼= G.

Practical issues: need complete orbit to identify element with smallest label. One
idea is to exploit the characteristic structure of the p-multiplicator (as before).

Note: The std-pcp is only “standard” because it has been computed by some
deterministic rule. Std-pcps are a very efficient tool to partition sets of groups
into isomorphism classes.
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Automorphism groups

Go to Isomorphisms

Go to Coclass
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Automorphism Groups Algorithm Example Stabiliser Problem

Resources

Constructing automorphism groups of p-groups
B. Eick, C. R. Leedham-Green, E. A. O’Brien
Comm. Algebra 30, 2271-2295 (2002)
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Computing automorphism groups

Let G be a d-generator p-group with lower p-central series

G = P0(G) > P1(G) > . . . > Pc(G) = 1.

In the following write Gi = G/Pi(G).

We want to construct Aut(G).

Approach

Compute Aut(G) = Aut(Gc) by induction on that series:

Aut(G1) = Aut(Cdp ) ∼= GLd(q)

construct Aut(Gk+1) from Aut(Gk).

For the induction step use ideas from p-group generation.
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Computing automorphism groups

Let H = Gk and K = Gk+1; given Aut(H), compute Aut(K).

Recall from p-group generation:

compute H∗ = F/R∗ and the multiplicator M = R/R∗;

determine allowable subgroup U/R∗ ≤M defining K, that is, K ∼= F/U ;

each α ∈ Aut(H) extends to α∗ ∈ Aut(H∗) which leaves M invariant;
via this construction, Aut(H) acts on the set of allowable subgroups;

let Σ be the stabiliser of U/R∗ in Aut(H) under this action;

every α ∈ Σ defines an automorphism of F/U ∼= K;
let S ≤ Aut(K) be the subgroup induced by Σ;

let T ≤ Aut(K) be the kernel of Aut(K)→ Aut(H).

Theorem

With the previous notation, Aut(K) = 〈S, T, Inn(K)〉.
For a proof see O’Brien (1999).
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Computing automorphism groups
Recall from p-group generation:

H = G/Pk(G) and K = G/Pk+1(G); we have K/Pk(K) ∼= H;

K is quotient of H∗ by allowable subgroup U/R∗;

S ≤ Aut(K) induced by stabiliser Σ of U/R∗ in Aut(H)

T ≤ Aut(K) is kernel of Aut(K)→ Aut(H);

Aut(K) = 〈S, T, Inn(K)〉.
Problem: how to determine S and T efficiently?

Lemma

Let {g1, . . . , gd} and {x1, . . . , xl} be minimal generating sets for K and Pk(K),
respectively. Define

βi,j : K → K,

{
gi 7→ gixj

gn 7→ gn (n 6= i).

Then T = 〈{βi,j : 1 ≤ i ≤ d, 1 ≤ j ≤ l}〉, an elementary abelian p-group.

Main problem: Compute S, that is, the stabiliser Σ of U/R∗ in Aut(H).
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Induction step: example

Consider G = Pc〈a1, . . . , a4 | [a2, a1] = a3, a
5
1 = a4, a

5
2 = a53 = a54 = 1〉;

this group has 5-class 2 with P1(G) = 〈a3, a4〉.

Clearly, H = G/P1(G) = Pc〈a1, a2 | a51 = a52 = 1〉 with Aut(H) ∼= GL2(5).

Now compute:

H∗ = Pc〈a1, . . . , a5 | [a2, a1] = a3, a
5
1 = a4, a

5
2 = a5, a

5
3 = a54 = a55 = 1〉

the allowable subgroup U/R∗ = 〈a5〉 yields G as a quotient of H∗

α1 : (a1, a2) 7→ (a21, a2) and α2 : (a1, a2) 7→ (a41a2, a
4
1) generate Aut(H);

their extensions act on the multiplicator 〈a3, a4, a5〉 as(
2 0 0
0 2 0
0 0 1

)
,
(

1 0 0
0 4 1
0 4 0

)
the stabiliser Σ of U/R∗ is generated by the extensions of α1 and α2α1α

2
2

a generating set for T is {β1,4, β2,4, β1,3, β2,3}
This yields indeed Aut(G) = 〈T, S, Inn(G)〉, where S is induced by Σ
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Stabiliser problem

To do: Compute stabiliser of allowable subgroup U/R∗ under action of Aut(H).

Our set-up is:

consider M = R/R∗ as GF(p)-vectorspace and V = U/R∗ as subspace;

represent the action of Aut(H) on M as a subgroup A ≤ GLm(p);

compute the stabiliser of V in A.

Simple Approach: Orbit-Stabiliser Algorithm – constructs the whole orbit!

We’ll briefly discuss the following ideas:

1 exploiting structure of M

2 exploiting structure of A

3 exploiting structure of K (and G)
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Stabiliser problem: exploiting structure of M

Task: compute stabiliser of allowable subspace V ≤M under A.

Idea: exploit the fact that N = Pk+1(H∗) ≤M is characteristic in H∗,

Idea:

and that M = NV (since V is allowable)

Use this to split stabiliser computation in two steps:

compute the stabiliser of V ∩N as subspace of N :

use MeatAxe to compute composition series of N as A-module;
then compute orbit and stabiliser of V ∩N stepwise7

compute orbit of V/(V ∩N) as subspace of M/(V ∩N):

V/(V ∩N) is complement to N/(V ∩N) in M/(V ∩N), and N/(V ∩N) is
A-invariant; compute A-module composition series of M/N and N/(V ∩N)
and break computation up in smaller steps

7see Eick, Leedham-Green, O’Brien (2002) for details
Heiko Dietrich (heiko.dietrich@monash.edu) Computational aspects of finite p-groups ICTS, Bangalore 2016



Automorphism Groups Algorithm Example Stabiliser Problem

Stabiliser problem: exploiting structure of A

Task: compute stabiliser of allowable subspace V ≤M under A.

Idea: Consider series AD S D P D 1, where

P induced by ker(H → Aut(H/P1(H))), a normal p-subgroup

S solvable radical, with S = S1 B . . .B Sn B P , each section prime order.

Schwingel Algorithm for stabiliser under p-group P

One can compute a “canonical” representative of V P and generators for
StabP (V ) without enumerating the orbit; see E-LG-O’B (2002).

Next, compute StabA(V ) along S = S1 B . . .B Sn B P , using the next lemma:

Lemma

Let L be a group acting on Ω; let T E L and let ω ∈ Ω.
Then ωT is an L-block in Ω, and StabL(ωT ) = TStabL(ω).

If l ∈ StabL(ωT ), then ωl = ωt for some t ∈ T , hence lt−1 ∈ StabL(ω).
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Stabiliser problem: exploiting structure of A

Compute StabA(V ) along S = S1 B . . .B Sn B P , using the next lemma:

Lemma

Let L be a group acting on Ω; let T E L and ω ∈ Ω.
Then ωT is an L-block in Ω, and StabL(ωT ) = TStabL(ω).

If orbit V Si and stabiliser StabSi
(V ) are known, compute StabSi−1

(V Si), and
extend each generator to an element in StabSi−1

(V ).

Advantage: Reduce the number of generators of StabS(V ) substantially
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Stabiliser problem: exploiting structure of K (and G)

Recall: we aim to construct Aut(G) by induction on lower p-central series with
terms Gi = G/Pi(G); initial step is Aut(G1) ∼= GLd(p)

Idea: Aut(G) induces a subgroup R ≤ Aut(G1); instead of starting with Aut(G1),
start with L ≤ GLd(p) such that R ≤ L and [L : R] is small.

Approach:

construct a collection of characteristic subgroups of G, such as:
centre, derived group, Ω, 2-step centralisers,...

restrict this collection to G1 = G/P1(G)

Schwingel has developed an algorithm to construct the subgroup
R ≤ Aut(G1) ∼= GLd(p) stabilising this lattice of subspaces of G1

This aproach frequently reduces to small subgroups of GLd(p) as initial group.
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Conclusion Lecture 4

Things we have discussed in the forth lecture:

std-pcp, isomorphism test for p-groups

automorphism group computation

Lecture 4 is also the last lecture on the ANUPQ algorithms:

ANUPQ (ANU-p-Quotient program), 22,000 lines of C code developed by
O’Brien; providing implementations of

p-quotient algorithm

p-group generation algorithm

isomorphism test for p-groups

automorphisms of p-groups

Implementations are also available in GAP and Magma; various papers discuss the
theory and efficiency of these algorithms.
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What’s the Greek letter for “p” . . . ?
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πππ
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“Theorem”

We have π = 4.

Proof.
We take a unit circle with diameter 1 and approximate its circumference (which is
defined to be π) by computing its arc-length. Remember how arc-length is
defined? Use a polygonal approximation!

In every iteration: cirumference is π, arc lenght of red curve is 4.
So in the limit: π = 4, as claimed.

Well . . . obviously that is wrong!
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Everyone knows that the following is true . . .

“Theorem”

We have π = 0.

Proof.
We start with Euler’s Identity 1 = e2πı, which yields e = e2πı+1. Now observe:

e = e2πı+1 = (e2πı+1)2πı+1 = e(2πı+1)2 = e−4π
2

ee4πı.

Since e4πı = 1, this yields 1 = e−4π
2

. Since −4π2 ∈ R, this forces 0 = −4π2.
Since −4 6= 0, we must have π = 0, as claimed.

Heiko Dietrich (heiko.dietrich@monash.edu) Computational aspects of finite p-groups ICTS, Bangalore 2016



Coclass Theory Maximal Class Coclass Coclass Graph Central Conjecture Some results

Coclass theory

Go to Automorphisms

Go to End
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Coclass Theory Maximal Class Coclass Coclass Graph Central Conjecture Some results

Resources

The structure of groups of prime-power order
C. R. Leedham-Green, S. McKay
Oxford Science Publications (2002)

and some recent papers on coclass graphs
(Eick, Leedham-Green, Newman, O’Brien, D.)
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Classifying p-groups by order

Recall:

order #

1 1

2 1

4 2

8 5

16 14

32 51

64 267

order #

128 2,328

256 56,092

512 10,494,213

1024 49,487,365,422

2048 >1,774,274,116,992,170

“The precise structure of p-groups is too complex for the human intellect.”
(Leedham-Green & McKay 2002)
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Maximal class

Maximal class

A p-group G of order pn has maximal class if it has nilpotency class n− 1.

Groups of maximal class have been investigated in detail.
(Wiman 1954, Blackburn 1958, Leedham-Green & McKay 1976–1984,

Fernández-Alcober 1995, Vera-López et al. 1995–2008)

The 2- and 3-groups of maximal class are classified.
(Blackburn: Description by finitely many parametrised presentations.)

The 5-groups of maximal class are investigated in detail.
(Leedham-Green & McKay, Newman 1990, D., Eick & Feichtenschlager 2007)

For p ≥ 7 such a classification is open.

Heiko Dietrich (heiko.dietrich@monash.edu) Computational aspects of finite p-groups ICTS, Bangalore 2016



Coclass Theory Maximal Class Coclass Coclass Graph Central Conjecture Some results

Coclass

Maximal class is an important special case in coclass theory:

Coclass

A p-group G of order pn and nilpotency class c has coclass n− c.

Thus:

the p-groups of maximal class are the p-groups of coclass 1,

coclass is an isomorphism invariant.

Strategy: Investigate the p-groups of a fixed coclass.

Strategy:

(Leedham-Green & Newman 1980)

Leedham-Green & Newman proposed five Coclass Conjectures A–E on the
structure of the p-groups of a fixed coclass. Their proof was a first milestone in
coclass theory and provided a deep insight in the structure of p-groups.
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Coclass

Coclass Conjectures
Theorem A: There is a function f(p, r) such that every p-group

of coclass r has a normal subgroup of nilpotency
class 2 and index at most f(p, r).

Theorem B: There is a function g(p, r) such that every p-group
of coclass r has derived length at most g(p, r).

Theorem C: Every pro-p group of coclass r is solvable.

(= inverse limit of finite p-groups of coclass r.)

Theorem D: There are only finitely many isomorphism types of
infinite pro-p groups of coclass r.

Theorem E: There are only finitely many isomorphism types of
solvable infinite pro-p groups of coclass r.

(Leedham-Green 1994, Shalev 1994)
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Coclass graph

Main approach since 1999: analyse the coclass graph G(p, r).

Vertices: Isomorphism type reps of finite p-groups of coclass r.

Edges: G→ H if and only if G ∼= H/γcl(H)(H); then |H| = p|G|.

Examples: G(2, 1) G(3, 1)
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Coclass graph

The infinite paths in G(p, r):

There is 1-to-1 correspondence between the infinite pro-p groups of
coclass r (up to isom.) and the maximal infinite paths in G(p, r).

It follows from the Coclass Theorems:

The infinite paths are well-understood and finite in number!

Only finitely many groups are not connected to an infinite path.

Number of infinite paths in G(p, r):

p arbitrary and r = 1 (Blackburn): 1

p = 2 and r = 2, 3 (Newman & O’Brien): 5, 54

p = 3 and r = 2, 3, 4 (Eick): 16, ≥1271, ≥137299952383
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Sorry!

We have to switch to the black board style because some figure are
prepared for that...
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General structure of coclass graphs

G(p, r) can be partitioned into a finite subgraph and finitely many infinite trees
each having a unique infinite path starting at its root.
These trees are the coclass trees of G(p, r).

T1
T2 Tm

G(p, r)

< ∞ groups

Su

Bu

Bu+1

Bn

Sn

Su+1

T

Let T be a coclass tree in G(p, r) with corresponding pro-p group S:

The groups Sn = S/γn(S) with n ≥ u form the mainline of T .

The finite subtrees Bn are the branches of T .
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The graph G(2, 2)
The five coclass trees of G(2, 2):
(Newman & O’Brien 1996)

T4T3T2T1

3

4

4

2

47 4

T5

551

1

The branches are isomorphic with periodicity 1 and 2, respectively.

The roots have order 26, 26, 24, 24, and 25, respectively.

There are 19 groups which do not lie in any of these trees.

For arbitrary r: branches of trees in G(2, r) have bounded depths.

This does not hold for odd primes, except (p, r) = (3, 1).
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Two branches in G(5, 1)
B13

(only capables)
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Based on significant computation with the p-group generation algorithm:

Central Conjecture
G(p, r) can be described by a finite subgraph and periodic patterns.

The p-groups of coclass r can be classified.
( description by finitely many parametrised presentations)

Example: the groups in G(2, 1) of order 2n ≥ 16

D2n = Pc〈a, b | a2
n−1

= b2 = 1, ab = a−1〉,
SD2n = Pc〈a, b | a2

n−1

= b2 = 1, ab = a2
n−2−1〉,

Q2n = Pc〈a, b | a2
n−1

= 1, b2 = a2
n−2

, ab = a−1〉.

Known results:

The Central Conjecture is proved for p = 2.
(Newman & O’Brien 1999, du Sautoy 2001, Eick & Leedham-Green 2008)

Applications for p = 2: Some invariants of the groups can be described in a
uniform way. (Eick 2006, 2008)

For odd primes: Only partial results are known.
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Periodicity I

T coclass tree with branches Bu,Bu+1, . . .
The pruned branch Bn(k) is the subtree of Bn
induced by groups of depth at most k in Bn.

Sn

Bn

Sn

Bn

k
Bn(k)

Theorem (du Sautoy 2001, Eick & Leedham-Green 2008)

There exist integers f = f(T , k) and d = d(T ) such that for all n ≥ f

Bn(k) ∼= Bn+d(k).

Eick & Leedham-Green determined d, an upper bound for f , and proved:

Theorem (Eick & Leedham-Green 2008)

The infinitely many groups in Bn(k), n ≥ u, can be described by finitely many
parametrised presentations.

These theorems prove the Central Conjecture for p = 2;
they are not sufficient to prove it for odd primes.
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Coclass Theory Maximal Class Coclass Coclass Graph Central Conjecture Some results

Periodicity II

For odd primes: Some coclass trees contain sequences of branches
Bi,Bi+d,Bi+2d, . . . with strictly increasing depths.

Problem: Describe the growth of these branches.

Sn

Sn−d

G

Bn

e

Bn−d

H
e− d

∼=

D(G)

Conjecture (based on experiments for G(5, 1) and G(3, 2))

If e and n are large enough, then for every group G at depth e in Bn there exists a
group H at depth e− d in Bn−d such that D(G) ∼= D(H).

This conjecture is rather vague and only very little is known;
some important results for G(p, 1) exist.
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Conjecture W

k

k − d

k

k

k − d

k − d

G

Bℓ+id

Bℓ+(i−1)d

G

H

ν

H

Bℓ

∼=

Conjecture W (Eick, Leedham-Green, Newman, O’Brien 2013)

Fix k and ` such that B`(k) ∼= B`+jd(k) for all j.
Let K ∈ B` be the group corresponding to K ∈ B`+jd.
There is a map ν from the groups at depth k in B` to the groups at depth k − d in B`

such that the picture holds... in particular, D(G) ∼= D(H)
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Important subtree: skeleton groups

Let T be a coclass tree in G(p, r), with associated pro-p group S.

Problem: the branches of T are usually pretty “thick” and “wide”.

Skeleton groups (for split pro-p groups)

Let S = P n T with T ∼= (Zdp,+) and uniserial series T = T0 > T1 > T2 > . . .
Let γ : T ∧ T � Tn be P -module hom and m ≥ n such that γ(Tn ∧ T ) ≤ Tm.
Let Tγ,m = (T/Tm, ◦) with (a+ Tm) ◦ (b+ Tm) = a+ b+ 1

2γ(a ∧ b) + Tm;
then Cγ,m = P n Tγ,m is the skeleton group defined by γ and m.

Theorem (Leedham-Green 1994)

If G is in T , then there is N EG with order bounded by r and p, such that G/N
is a “skeleton group”; the structure of skeleton groups is easier to understand, and
the “skeleton of T ” is a significant subtree of T .
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The graph G(5, 1)

Shalev (“Problem 3”, 1994): Classify the 5-groups of maximal class.

The graph G(5, 1) has a unique coclass tree T (5); write Tk = Bk(k − 4).

Theorem (D. 2010)

The pruned branches Tk of T (5) can be described by a finite subgraph and the
periodicities of type I & II. The groups in these pruned branches can be classified
by finitely many parametrised presentations with ≤ 2 integer parameters.
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Coclass Theory Maximal Class Coclass Coclass Graph Central Conjecture Some results

G(5, 1): the trees T10+4x with x ≥ 1

Proved: T10+4x consists of the yellow part and x copies of the red part:
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Conjecture: The difference B10+4x \ T10+4x is the green part.
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G(5, 1): the trees T11+4x, T12+4x, and T13+4x
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Coclass Theory Maximal Class Coclass Coclass Graph Central Conjecture Some results

G(5, 1): Periodicity classes

The origins of the periodicity classes in Ti with 14 ≤ i ≤ 17:

Bi

Bi+4

Bi+8

“Cyan”: 1 Parameter
“White”: 2 Parameters
“Black”: 1 Parameter (conjectured!)

Skip stuff
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The graph G(3, 2)

Theorem (Eick, Leedham-Green, Newman, O’Brien 2013)

Conjecture W holds for the skeletons in G(3, 2).

Moreover:

G(3, 2) has 16 coclass trees, but only 4 have unbounded depths

some coclass trees admit both, subsequences of branches of bounded depths
and subsequences of branches of unbounded depths

occurrence of “exceptional isomorphisms” between skeleton groups

the “twigs” are described conjecturally

Heiko Dietrich (heiko.dietrich@monash.edu) Computational aspects of finite p-groups ICTS, Bangalore 2016

Coclass Theory Maximal Class Coclass Coclass Graph Central Conjecture Some results

G(3, 2): skeletons
Skeletons of the split pro-3 group:

Conjectural description of twigs: usually depth 3 and up to 20,000 vertices

Heiko Dietrich (heiko.dietrich@monash.edu) Computational aspects of finite p-groups ICTS, Bangalore 2016
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G(3, 2): skeletons

Skeletons of the three non-split pro-3 groups;
skeleton only exists if class of root is congruent 0 modulo 3:

Conjectural description of twigs: up to depth 6 and 20,000 vertices

Heiko Dietrich (heiko.dietrich@monash.edu) Computational aspects of finite p-groups ICTS, Bangalore 2016

Coclass Theory Maximal Class Coclass Coclass Graph Central Conjecture Some results

Know periodicity results

Most results and conjectures are motivated by computer experiments, in
particular, with the p-group generation algorithm.

What is known so far:

periodicity of type I for all graphs G(p, r),

significant local results on periodicity of type II for the graphs G(p, 1),

most of G(5, 1) and the skeleton structure of G(3, 2)

Comments on periodicity of type II:

all known results consider pruned branches

most results consider only skeleton groups

G(5, 1) and G(3, 2) only have branches of finite width

D. & Eick recently considered G(p, 1) in more detail (2016)

There is still a lot to do – we’re working on it . . .

skip stuff
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Coclass Theory Maximal Class Coclass Coclass Graph Central Conjecture Some results

A new result: maximal class and ’large’ aut grps

Now consider G(p, 1) with p ≥ 7.

Let T be the coclass tree with branches Bj and bodies Tj = Bj(j − 2p+ 8).

Motivated by the known periodicity results for G(p, 1) and promising computer
experiments, Bettina Eick and I studied the following subtrees of T :

Definition

Let B∗j be the subtree of Bj consisting of all groups whose automorphism group
order is divisible by p− 1. Let S∗j be the subtree of the body Tj consisting of all
skeleton groups whose automorphism group order is divisible by p− 1.

(Note: p− 1 is essentially the largest possible p′-part of that aut-group order.)

Heiko Dietrich (heiko.dietrich@monash.edu) Computational aspects of finite p-groups ICTS, Bangalore 2016

Coclass Theory Maximal Class Coclass Coclass Graph Central Conjecture Some results

G(7, 1): the trees B∗j and S∗j for j = 10, . . . , 16

Heiko Dietrich (heiko.dietrich@monash.edu) Computational aspects of finite p-groups ICTS, Bangalore 2016
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Conjectured structure of S∗j for p = 7, 11

7

7

7

7 11

11

11

11

11

11

11

11

11

11

11

11

11 11 11

For p = 7:

depth j − 6

2 groups Gj,1, Gj,2 at depth 1

7-fold ramifications at levels

2 + 6N in path of Gj,1

4 + 6N in path of Gj,2

For p = 11:

depth j − 14

4 groups Gj,1, . . . , Gj,4 at depth 1

11-fold ramifications at levels

{2, 4, 6}+10N in path of Gj,1

{2, 4, 8}+10N in path of Gj,2

{2, 6, 8}+10N in path of Gj,3

{4, 6, 8}+10N in path of Gj,4

Heiko Dietrich (heiko.dietrich@monash.edu) Computational aspects of finite p-groups ICTS, Bangalore 2016

Coclass Theory Maximal Class Coclass Coclass Graph Central Conjecture Some results

p-groups of maximal class with ’large’ aut-group

Let d = p− 1d = p− 1d = p− 1 and ` = (p− 3)/2` = (p− 3)/2` = (p− 3)/2.

Theorem (2016)

The skeleton S∗n has ` groups Gn,1, . . . , Gn,` at depth 1.

Ramifications are always p-fold and occur exactly at depth

{2, 4, . . . , d− 2} \ {d− 2i} + dN

in the path of Gn,i, for i = 1, . . . , `.

The proof is heavily based on number theory and existing results for maximal class
groups (19 pages, submitted 2016).

Conjectural description of twigs:
structure of twigs depends only on i, on (e mod d), and on (n mod d).

This is the first periodicity result supporting Conjecture W in the context of
coclass trees with unbounded width.

Heiko Dietrich (heiko.dietrich@monash.edu) Computational aspects of finite p-groups ICTS, Bangalore 2016



The End The End

The end . . .

Go to Coclass

Go to Overview

Heiko Dietrich (heiko.dietrich@monash.edu) Computational aspects of finite p-groups ICTS, Bangalore 2016

The End The End

. . . . . . looking back:

1 motivation
2 pc presentations
3 p-quotient algorithm
4 p-group generation
5 isomorphism test
6 automorphism groups
7 coclass theory

Heiko Dietrich (heiko.dietrich@monash.edu) Computational aspects of finite p-groups ICTS, Bangalore 2016
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