[go: up one dir, main page]

login
Search: a059441 -id:a059441
     Sort: relevance | references | number | modified | created      Format: long | short | data
Number of regular simple graphs on n labeled nodes.
+10
33
1, 2, 2, 8, 14, 172, 932, 45936, 1084414, 155862512, 10382960972, 6939278572096, 2203360500122300, 4186526756621772344, 3747344008241368443820, 35041787059691023579970848, 156277111373303386104606663422, 4142122641757598618318165240180096
OFFSET
1,2
LINKS
E. A. Bender and E. R. Canfield, The asymptotic number of labeled graphs with given degree sequences, Journal of Combinatorial Theory, Series A, 24 (1978), 296-307.
Andrew Howroyd, PARI Program
Atabey Kaygun, Enumerating Labeled Graphs that Realize a Fixed Degree Sequence, arXiv:2101.02299 [math.CO], 2021.
B. D. McKay, Applications of a technique for labelled enumeration, Congress. Numerantium, 40 (1983), 207-221.
Wikipedia, Regular graph
EXAMPLE
From Gus Wiseman, Dec 19 2018: (Start)
A graph is regular if all vertices have the same degree. For example, the a(4) = 8 simple regular graphs are:
1 2
3 4
.
4---1 3---1 2---1
3---2 4---2 4---3
.
3---4 4---3 4---2
| | | | | |
1---2 1---2 1---3
.
4---3
| X |
2---1
(End)
MATHEMATICA
Table[Sum[SeriesCoefficient[Product[1+Times@@x/@s, {s, Subsets[Range[n], {2}]}], Sequence@@Table[{x[i], 0, k}, {i, n}]], {k, 0, n-1}], {n, 1, 9}] (* Gus Wiseman, Dec 19 2018 *)
PROG
(PARI) \\ See link for program file.
for(n=1, 10, print1(A295193(n), ", ")) \\ Andrew Howroyd, Aug 28 2019
CROSSREFS
Row sums of A059441.
KEYWORD
nonn
AUTHOR
Álvar Ibeas, Nov 16 2017
EXTENSIONS
a(16)-a(18) from Andrew Howroyd, Aug 28 2019
STATUS
approved
Number of trivalent (or cubic) labeled graphs with 2n nodes.
(Formerly M5346 N2324)
+10
26
1, 0, 1, 70, 19355, 11180820, 11555272575, 19506631814670, 50262958713792825, 187747837889699887800, 976273961160363172131825, 6840300875426184026353242750, 62870315446244013091262178375075, 741227949070136911068308523257857500
OFFSET
0,4
REFERENCES
Miklos Bona, editor, Handbook of Enumerative Combinatorics, CRC Press, 2015, p. 411.
L. Comtet, Advanced Combinatorics, Reidel, 1974, p. 279.
I. P. Goulden and D. M. Jackson, Combinatorial Enumeration, John Wiley and Sons, N.Y., 1983.
R. C. Read, Some Enumeration Problems in Graph Theory. Ph.D. Dissertation, Department of Mathematics, Univ. London, 1958.
R. W. Robinson, Numerical implementation of graph counting algorithms, AGRC Grant, Math. Dept., Univ. Newcastle, Australia, 1977.
R. W. Robinson, Computer print-out, no date. Gives first 30 terms.
N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
LINKS
Alois P. Heinz, Table of n, a(n) for n = 0..160 (first 31 terms from R. W. Robinson)
F. Chyzak, M. Misnha and B. Salvy, Effective D-Finite Symmetric Functions, FPSAC '02 (2002) # 19.12, see Maple output prior to the References.
Élie de Panafieu, Asymptotic expansion of regular and connected regular graphs, arXiv:2408.12459 [math.CO], 2024. See p. 9.
Oleg Evnin and Weerawit Horinouchi, A Gaussian integral that counts regular graphs, arXiv:2403.04242 [cond-mat.stat-mech], 2024. See p. 12.
I. P. Goulden and D. M. Jackson, Labelled graphs with small vertex degrees and P-recursiveness, SIAM J. Algebraic Discrete Methods 7(1986), no. 1, 60-66. MR0819706 (87k:05093)
I. P. Goulden, D. M. Jackson, and J. W. Reilly, The Hammond series of a symmetric function and its application to P-recursiveness, SIAM J. Algebraic Discrete Methods 4 (1983), no. 2, 179-193.
Atabey Kaygun, Enumerating Labeled Graphs that Realize a Fixed Degree Sequence, arXiv:2101.02299 [math.CO], 2021.
Igor Pak, Complexity problems in enumerative combinatorics, arXiv:1803.06636 [math.CO], 2018.
R. C. Read, Letter to N. J. A. Sloane, Feb 04 1971 (gives initial terms of this sequence)
N. C. Wormald, Enumeration of labelled graphs II: cubic graphs with a given connectivity, J. Lond Math Soc s2-20 (1979) 1-7, eq. (2.6).
FORMULA
From Vladeta Jovovic, Mar 25 2001: (Start)
E.g.f. f(x) = Sum_{n >= 0} a(2 * n) * x^n/(2 * n)! satisfies differential equation 6 * x^2 * (-x^2 - 2 * x + 2) * (d^2/dx^2)f(x) - (x^5 + 6 * x^4 + 6 * x^3 - 32 * x + 8) * (d/dx)f(x) + (x/6) * (-x^2 - 2 * x + 2)^2 * f(x) = 0.
Recurrence: a(2 * n) = (2 * n)!/n! * v(n) where 48 * v(n) + (-72 * n^2 + 24 * n + 48) * v(n - 1) + (72 * n^3 - 432 * n^2 + 788 * n - 428) * v(n - 2) + (36 * n^4 - 324 * n^3 + 1052 * n^2 - 1428 * n + 664) * v(n - 3) + (36 * n^4 - 360 * n^3 + 1260 * n^2 - 1800 * n + 864) * v(n - 4) + (6 * n^5 - 94 * n^4 + 550 * n^3 - 1490 * n^2 + 1844 * n - 816) * v(n - 5) + (-n^5 + 15 * n^4 - 85 * n^3 + 225 * n^2 - 274 * n + 120) * v(n - 6) = 0. (End)
a(n) = Sum_{i=0..2n} Sum_{k=0..min(floor((3n-i)/3), floor((2n-i)/2))} Sum_{j=0..min(floor(3n-i-3k)/2), floor((2n-i-2k)/2))} ((-1)^(i+j)*(2n)!(2*(3n-i-2j-3k))!)/(2^(5n-i-2j-4k)*3^(2n-i-2j-k)*(3n-i-2j-3k)!i!j!k!(2n-i-2j-2k)!). - Shanzhen Gao, Jun 05 2009
E.g.f.: hypergeom([1/6, 5/6],[],12*x/(x^2+8*x+4)^(3/2))*exp(-log(1/4*x^2+2*x+1)/4 - x/3 + (x^2+8*x+4)^(3/2)/(24*x) - 1/(3*x) - x^2/24 - 1). Multiply x^i by (2*i)! to get the generating function. - Mark van Hoeij, Nov 07 2011
D-finite with recurrence: 3*(3*n-7)*(3*n-4)*a(n) = 9*(n-1)*(2*n-1)*(3*n-7)*(3*n^2 - 4*n + 2)*a(n-1) + (n-1)*(2*n-3)*(2*n-1)*(108*n^3 - 441*n^2 + 501*n - 104)*a(n-2) + 2*(n-2)*(n-1)*(2*n-5)*(2*n-3)*(2*n-1)*(3*n-1)*(9*n^2 - 42*n + 43)*a(n-3) - 2*(n-3)*(n-2)*(n-1)*(2*n-7)*(2*n-5)*(2*n-3)*(2*n-1)*(3*n-4)*(3*n-1)*a(n-4). - Vaclav Kotesovec, Mar 11 2014
a(n) ~ sqrt(2) * 6^n * n^(3*n) / exp(3*n+2). - Vaclav Kotesovec, Mar 11 2014
MAPLE
From R. J. Mathar, Oct 31 2010: (Start)
A002829aux := proc(i) local a, j, k ; a := 0 ; for j from 0 to i do for k from 0 to 2*(i-j) do a := a+(-1)^(j+k)/j!*doublefactorial(2*i+2*k-1)/3^k/k!/(2*i-2*j-k)! ; end do: end do: a*3^i/2^i ; end proc:
A002829 := proc(n) (2*n)!/6^n*add( A002829aux(i)/(n-i)!, i=0..n) ; end proc: seq(A002829(n), n=0..6) ; (End)
egf := hypergeom([1/6, 5/6], [], 12*x/(x^2+8*x+4)^(3/2)) * exp(-ln(1/4*x^2+2*x+1)/4 - x/3 + (x^2+8*x+4)^(3/2)/(24*x) - 1/(3*x) - x^2/24 - 1):
ser := convert(series(egf, x=0, 30), polynom):
seq(coeff(ser, x, i) * (2*i)!, i=0..degree(ser)); # Mark van Hoeij, Nov 07 2011
MATHEMATICA
Flatten[{1, RecurrenceTable[{2 (-3+n) (-2+n) (-1+n) (-7+2 n) (-5+2 n) (-3+2 n) (-1+2 n) (-4+3 n) (-1+3 n) a[-4+n]-2 (-2+n) (-1+n) (-5+2 n) (-3+2 n) (-1+2 n) (-1+3 n) (43-42 n+9 n^2) a[-3+n]-(-1+n) (-3+2 n) (-1+2 n) (-104+501 n-441 n^2+108 n^3) a[-2+n]-9 (-1+n) (-1+2 n) (-7+3 n) (2-4 n+3 n^2) a[-1+n]+3 (-7+3 n) (-4+3 n) a[n]==0, a[1]==0, a[2]==1, a[3]==70, a[4]==19355}, a, {n, 1, 15}]}] (* Vaclav Kotesovec, Mar 11 2014 *)
terms = 14;
egf = HypergeometricPFQ[{1/6, 5/6}, {}, 12x/(x^2 + 8x + 4)^(3/2)] Exp[-Log[ 1/4 x^2 + 2x + 1]/4 - x/3 + (x^2 + 8x + 4)^(3/2)/(24x) - 1/(3x) - x^2/24 - 1] + O[x]^terms;
CoefficientList[egf, x] (2 Range[0, terms-1])! (* Jean-François Alcover, Nov 23 2018, after Mark van Hoeij *)
PROG
(PARI) a(n) = sum(i=0, 2*n, sum(k=0, min(floor((3*n-i)/3), floor((2*n-i)/2)), sum(j=0, min(floor((3*n-i-3*k)/2), floor((2*n-i-2*k)/2)), ((-1)^(i+j)*(2*n)!*(2*(3*n-i-2*j-3*k))!)/(2^(5*n-i-2*j-4*k)*3^(2*n-i-2*j-k)*(3*n-i-2*j-3*k)!*i!*j!*k!*(2*n-i-2*j-2*k)!)))); \\ Michel Marcus, Jan 18 2018
CROSSREFS
A diagonal of A059441. Cf. A005814.
See A004109 for connected graphs of this type.
KEYWORD
nonn
EXTENSIONS
More terms from Vladeta Jovovic, Mar 25 2001
STATUS
approved
Number of clouds with n points; number of undirected 2-regular labeled graphs; or number of n X n symmetric matrices with (0,1) entries, trace 0 and all row sums 2.
(Formerly M2937 N1181)
+10
25
1, 0, 0, 1, 3, 12, 70, 465, 3507, 30016, 286884, 3026655, 34944085, 438263364, 5933502822, 86248951243, 1339751921865, 22148051088480, 388246725873208, 7193423109763089, 140462355821628771, 2883013994348484940
OFFSET
0,5
COMMENTS
a(n) is the number of ways of covering K_n with cycles of length >= 3. Also number of 'frames' on n lines: given n lines in general position (none parallel and no three concurrent), a frame is a subset of n of the e C(n,2) points of intersection such that no three points are on the same line. - Mitch Harris, Jul 06 2006
REFERENCES
Miklos Bona, editor, Handbook of Enumerative Combinatorics, CRC Press, 2015, p. 410-411.
L. Comtet, Advanced Combinatorics, Reidel, 1974, p. 276 and 279.
S. R. Finch, Mathematical Constants, Cambridge, 2003, Section 5.6.7.
Ph. Flajolet, Singular combinatorics, pp. 561-571, Proc. Internat. Congr. Math., Beijing 2002, Higher Education Press, Beijing, 2002, Vol III.
I. P. Goulden and D. M. Jackson, Combinatorial Enumeration, John Wiley and Sons, N.Y., 1983, ex. 3.3.6b, 3.3.34.
N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
R. P. Stanley, Enumerative Combinatorics, Cambridge, Vol. 2, 1999; see Example 5.2.8. Also problems 5.23 and 5.15(a), case k=3.
Z. Tan and S. Gao, Enumeration of (0,1)-Symmetric Matrices, submitted [From Shanzhen Gao, Jun 05 2009] [apparently unpublished as of 2016]
H. S. Wilf, Generatingfunctionology, Academic Press, NY, 1990, p. 77, Eq. 3.9.1.
W. A. Whitworth, Choice and Chance, Bell, 1901, p. 269, ex. 160.
LINKS
Editorial note, Robinson's constant, Amer. Math. Monthly, 59 (1952), 296-297.
Ph. Flajolet, Singular combinatorics, arXiv:math/0304465 [math.CO], 2003.
Ph. Flajolet and A. Odlyzko, Singularity analysis of generating functions, [Research Report] RR-0826, INRIA. 1988.
Atabey Kaygun, Enumerating Labeled Graphs that Realize a Fixed Degree Sequence, arXiv:2101.02299 [math.CO], 2021.
Rui-Li Liu and Feng-Zhen Zhao, New Sufficient Conditions for Log-Balancedness, With Applications to Combinatorial Sequences, J. Int. Seq., Vol. 21 (2018), Article 18.5.7.
H. Richter, Analyzing coevolutionary games with dynamic fitness landscapes, arXiv preprint arXiv:1603.06374 [q-bio.PE], 2016.
R. Robinson, A new absolute geometric constant?, Amer. Math. Monthly, 58 (1951), 462-469.
Weiping Wang, Tianming Wang, An automatic approach to the generating functions for some special sequences, Ars. Comb. 116 (2018) 263, Example 4.2
H. S. Wilf, Generatingfunctionology, 2nd edn., Academic Press, NY, 1994, p. 86, Eq. 3.9.1.
FORMULA
a(n) ~ n!*exp(-3/4)/sqrt(Pi*n).
E.g.f.: exp(-x/2-x^2/4)/sqrt(1-x).
D-finite with recurrence a(n+1) = n*(a(n)+a(n-2)*(n-1)/2).
1/4^n * Sum_{b=0..floor(n/2)} Sum_{g=0..n-2*b} (-1)^(b+g) * 2^(2b+g) * n! * (2n-4b-2g)! / (b! * g! * (n-2b-g)!^2). - Shanzhen Gao, Jun 05 2009
a(n) = (-1)^n*n!*Sum_{k=0..n}(3/4)^k*binomial(-1/2, n - k)*hypergeom([1/2, -k], [1/2 - n + k], 1/3)/ k!. - Peter Luschny, Aug 26 2017
MAPLE
a := n -> (-1)^n*n!*add((3/4)^k*binomial(-1/2, n-k)*hypergeom([1/2, -k], [1/2-n+k], 1/3)/ k!, k=0..n): seq(simplify(a(n)), n=0..21); # Peter Luschny, Aug 26 2017
MATHEMATICA
m = 21; CoefficientList[ Series[ Exp[-x/2 - x^2/4] / Sqrt[1-x], {x, 0, m}], x]*Table[n!, {n, 0, m}] (* Jean-François Alcover, Jun 21 2011, after e.g.f. *)
PROG
(PARI) a(n)=if(n<0, 0, n!*polcoeff(exp(-x/2-x^2/4+x*O(x^n))/sqrt(1-x+x*O(x^n)), n))
(Maxima)
a(n):=sum(sum(binomial(k, i)*binomial(i-1/2, n-k)*(3^(k-i)*n!)/(4^k*k!)*(-1)^(n-i), i, 0, k), k, 0, n);
makelist(a(n), n, 0, 12); /* Emanuele Munarini, Aug 25 2017 */
CROSSREFS
Cf. A000985, A000986, A002137. A diagonal of A059441 and A144163.
KEYWORD
nonn,easy,nice
STATUS
approved
Triangle read by rows: T(n,r) is the number of not necessarily connected r-regular graphs with n nodes, 0 <= r < n.
+10
24
1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 0, 1, 0, 1, 1, 1, 2, 2, 1, 1, 1, 0, 2, 0, 2, 0, 1, 1, 1, 3, 6, 6, 3, 1, 1, 1, 0, 4, 0, 16, 0, 4, 0, 1, 1, 1, 5, 21, 60, 60, 21, 5, 1, 1, 1, 0, 6, 0, 266, 0, 266, 0, 6, 0, 1, 1, 1, 9, 94, 1547, 7849, 7849, 1547, 94, 9, 1, 1, 1, 0, 10, 0, 10786, 0, 367860, 0, 10786
OFFSET
1,18
COMMENTS
A graph in which every node has r edges is called an r-regular graph. The triangle is symmetric because if an n-node graph is r-regular, than its complement is (n - 1 - r)-regular and two graphs are isomorphic if and only if their complements are isomorphic.
Terms may be computed without generating each graph by enumerating the number of graphs by degree sequence. A PARI program showing this technique for graphs with labeled vertices is given in A295193. Burnside's lemma can be used to extend this method to the unlabeled case. - Andrew Howroyd, Mar 08 2020
LINKS
Andrew Howroyd, Table of n, a(n) for n = 1..300 (rows 1..24, first 16 rows from Jason Kimberley)
Markus Meringer, Fast generation of regular graphs and construction of cages, J. Graph Theory 30 (2) (1999) 137-146. [Jason Kimberley, Nov 24 2009]
Markus Meringer, Tables of Regular Graphs
Eric Weisstein's World of Mathematics, Regular Graph.
FORMULA
T(n,r) = A068934(n,r) + A068933(n,r).
EXAMPLE
T(8,3) = 6. Edge-lists for the 6 3-regular 8-node graphs:
Graph 1: 12, 13, 14, 23, 24, 34, 56, 57, 58, 67, 68, 78
Graph 2: 12, 13, 14, 24, 34, 26, 37, 56, 57, 58, 68, 78
Graph 3: 12, 13, 23, 14, 47, 25, 58, 36, 45, 67, 68, 78
Graph 4: 12, 13, 23, 14, 25, 36, 47, 48, 57, 58, 67, 68
Graph 5: 12, 13, 24, 34, 15, 26, 37, 48, 56, 57, 68, 78
Graph 6: 12, 23, 34, 45, 56, 67, 78, 18, 15, 26, 37, 48.
Triangle starts
1;
1, 1;
1, 0, 1;
1, 1, 1, 1;
1, 0, 1, 0, 1;
1, 1, 2, 2, 1, 1;
1, 0, 2, 0, 2, 0, 1;
1, 1, 3, 6, 6, 3, 1, 1;
1, 0, 4, 0, 16, 0, 4, 0, 1;
1, 1, 5, 21, 60, 60, 21, 5, 1, 1;
1, 0, 6, 0, 266, 0, 266, 0, 6, 0, 1;
1, 1, 9, 94, 1547, 7849, 7849, 1547, 94, 9, 1, 1;
...
CROSSREFS
Row sums give A005176.
Regular graphs of degree k: A008483 (k=2), A005638 (k=3), A033301 (k=4), A165626 (k=5), A165627 (k=6), A165628 (k=7), A180260 (k=8).
KEYWORD
nonn,tabl
EXTENSIONS
More terms and comments from David Wasserman, Feb 22 2002
More terms from Eric W. Weisstein, Oct 19, 2002
Description corrected (changed 'orders' to 'degrees') by Jason Kimberley, Sep 06 2009
Extended to the sixteenth row (in the b-file) by Jason Kimberley, Sep 24 2009
STATUS
approved
Triangle read by rows: T(n,k) is the number of n X n symmetric binary matrices with k ones in every row and column.
+10
15
1, 1, 1, 1, 2, 1, 1, 4, 4, 1, 1, 10, 18, 10, 1, 1, 26, 112, 112, 26, 1, 1, 76, 820, 1760, 820, 76, 1, 1, 232, 6912, 35150, 35150, 6912, 232, 1, 1, 764, 66178, 848932, 1944530, 848932, 66178, 764, 1, 1, 2620, 708256, 24243520, 133948836, 133948836, 24243520, 708256, 2620, 1
OFFSET
0,5
COMMENTS
T(n,k) is the number of k-regular symmetric relations on n labeled nodes.
T(n,k) is the number of k-regular graphs with half-edges on n labeled vertices.
Terms may be computed without generating all graphs by enumerating the number of graphs by degree sequence. A PARI program showing this technique is given below. Burnside's lemma as applied in A122082 and A000666 can be used to extend this method to the case of unlabeled vertices A333159 and A333161 respectively.
LINKS
FORMULA
T(n,k) = T(n,n-k).
EXAMPLE
Triangle begins:
1,
1, 1;
1, 2, 1;
1, 4, 4, 1;
1, 10, 18, 10, 1;
1, 26, 112, 112, 26, 1;
1, 76, 820, 1760, 820, 76, 1;
1, 232, 6912, 35150, 35150, 6912, 232, 1;
1, 764, 66178, 848932, 1944530, 848932, 66178, 764, 1;
...
PROG
(PARI) \\ See script in A295193 for comments.
GraphsByDegreeSeq(n, limit, ok)={
local(M=Map(Mat([x^0, 1])));
my(acc(p, v)=my(z); mapput(M, p, if(mapisdefined(M, p, &z), z+v, v)));
my(recurse(r, p, i, q, v, e) = if(e<=limit && poldegree(q)<=limit, if(i<0, if(ok(x^e+q, r), acc(x^e+q, v)), my(t=polcoeff(p, i)); for(k=0, t, self()(r, p, i-1, (t-k+x*k)*x^i+q, binomial(t, k)*v, e+k)))));
for(k=2, n, my(src=Mat(M)); M=Map(); for(i=1, matsize(src)[1], my(p=src[i, 1]); recurse(n-k, p, poldegree(p), 0, src[i, 2], 0))); Mat(M);
}
Row(n)={my(M=GraphsByDegreeSeq(n, n\2, (p, r)->poldegree(p)-valuation(p, x) <= r + 1), v=vector(n+1)); for(i=1, matsize(M)[1], my(p=M[i, 1], d=poldegree(p)); v[1+d]+=M[i, 2]; if(pollead(p)==n, v[2+d]+=M[i, 2])); for(i=1, #v\2, v[#v+1-i]=v[i]); v}
for(n=0, 8, print(Row(n))) \\ Andrew Howroyd, Mar 14 2020
CROSSREFS
Row sums are A322698.
Central coefficients are A333164.
Cf. A188448 (transposed as array).
KEYWORD
nonn,tabl
AUTHOR
Andrew Howroyd, Mar 09 2020
STATUS
approved
Number of 4-valent labeled graphs with n nodes.
(Formerly M4991)
+10
13
1, 0, 0, 0, 0, 1, 15, 465, 19355, 1024380, 66462606, 5188453830, 480413921130, 52113376310985, 6551246596501035, 945313907253606891, 155243722248524067795, 28797220460586826422720
OFFSET
0,7
REFERENCES
Miklos Bona, editor, Handbook of Enumerative Combinatorics, CRC Press, 2015, p. 411.
L. Comtet, Advanced Combinatorics, Reidel, 1974, p. 279.
I. P. Goulden and D. M. Jackson, Combinatorial Enumeration, John Wiley and Sons, N.Y., 1983.
N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
LINKS
Vaclav Kotesovec, Table of n, a(n) for n = 0..260 (first 100 terms from Vincenzo Librandi)
Élie de Panafieu, Asymptotic expansion of regular and connected regular graphs, arXiv:2408.12459 [math.CO], 2024. See p. 9.
I. P. Goulden, D. M. Jackson, and J. W. Reilly, The Hammond series of a symmetric function and its application to P-recursiveness, SIAM J. Algebraic Discrete Methods 4 (1983), no. 2, 179-193.
Atabey Kaygun, Enumerating Labeled Graphs that Realize a Fixed Degree Sequence, arXiv:2101.02299 [math.CO], 2021.
Vaclav Kotesovec, Recurrence (of order 10)
R. C. Read and N. C. Wormald, Number of labeled 4-regular graphs, J. Graph Theory, 4 (1980), 203-212.
FORMULA
From Vladeta Jovovic, Mar 26 2001: (Start)
E.g.f. f(x) = Sum_{n >= 0} a(n)*x^n/(n)! satisfies the differential equation 16*x^2*(x - 1)^2*(x + 2)^2*(x^5 + 2*x^4 + 2*x^2 + 8*x - 4)*(d^2/dx^2)y(x) - 4*(x^13 + 4*x^12 - 16*x^10 - 10*x^9 - 36*x^8 - 220*x^7 - 348*x^6 - 48*x^5 + 200*x^4 - 336*x^3 - 240*x^2 + 416*x - 96)*(d/dx)y(x) - x^4*(x^5 + 2*x^4 + 2*x^2 + 8*x - 4)^2*y(x) = 0.
Recurrence: a(n) = - 1/384*(( - 256*n^2 - 896*n + 1152)*a(n - 1) + (768*n^3 - 3648*n^2 + 5568*n - 2688)*a(n - 2) + ( - 192*n^4 + 3264*n^3 - 14784*n^2 + 24384*n - 12672)*a(n - 3) + (224*n^6 - 4512*n^5 + 36304*n^4 - 148160*n^3 + 320016*n^2 - 341728*n + 137856)*a(n - 5) + ( - 640*n^5 + 8800*n^4 - 46400*n^3 + 116000*n^2 - 135360*n + 57600)*a(n - 4) + ( - 24*n^10 + 1320*n^9 - 31680*n^8 + 435600*n^7 - 3786552*n^6 + 21649320*n^5 - 82006320*n^4 + 201828000*n^3 - 306085824*n^2 + 255087360*n - 87091200)*a(n - 11) + (64*n^10 - 3480*n^9 + 82692*n^8 - 1127232*n^7 + 9726024*n^6 - 55255032*n^5 + 208179908*n^4 - 510068208*n^3 + 770738352*n^2 - 640484928*n + 218211840)*a(n - 9) + (16*n^11 - 992*n^10 + 27256*n^9 - 437160*n^8 + 4536288*n^7 - 31876656*n^6 + 154182488*n^5 - 510784360*n^4 + 1128552896*n^3 - 1570313952*n^2 + 1223830656*n - 397716480)*a(n - 10) + ( - 128*n^8 + 5488*n^7 - 94576*n^6 + 864976*n^5 - 4606672*n^4 + 14604352*n^3 - 26753984*n^2 + 25611264*n - 9630720)*a(n - 7) + (16*n^9 - 576*n^8 + 8704*n^7 - 71680*n^6 + 348880*n^5 - 1013824*n^4 + 1673376*n^3 - 1333120*n^2 + 226944*n + 161280)*a(n - 8) + (128*n^7 - 2192*n^6 + 12048*n^5 - 8240*n^4 - 151248*n^3 + 565312*n^2 - 765248*n + 349440)*a(n - 6) + ( - 4*n^13 + 364*n^12 - 14924*n^11 + 364364*n^10 - 5897892*n^9 + 66678612*n^8 - 540145892*n^7 + 3163772612*n^6 - 13344475144*n^5 + 39830815024*n^4 - 81255012384*n^3 + 106386868224*n^2 - 79211036160*n + 24908083200)*a(n - 14) + ( - 4*n^13 + 360*n^12 - 14612*n^11 + 353496*n^10 - 5674812*n^9 + 63680760*n^8 - 512439356*n^7 + 2983811688*n^6 - 12520194544*n^5 + 37201987680*n^4 - 75598952832*n^3 + 98660630016*n^2 - 73265264640*n + 22992076800)*a(n - 13) + ( - 16*n^12 + 1244*n^11 - 43208*n^10 + 884620*n^9 - 11860728*n^8 + 109396452*n^7 - 709293464*n^6 + 3243764260*n^5 - 10331326456*n^4 + 22203205904*n^3 - 30301280928*n^2 + 23300910720*n - 7504358400)*a(n - 12) + ( - n^14 + 105*n^13 - 5005*n^12 + 143325*n^11 - 2749747*n^10 + 37312275*n^9 - 368411615*n^8 + 2681453775*n^7 - 14409322928*n^6 + 56663366760*n^5 - 159721605680*n^4 + 310989260400*n^3 - 392156797824*n^2 + 283465647360*n - 87178291200)*a(n - 15)). (End)
a(n) = Sum_{d=0..floor(n/2), c=0..floor(n/2-d), b=0..(n-2c-2d), f=0..(n-2c-2d-b), k=0..min(n-b-2c-2d-f, 2n-2f-2b-3c-4d), j=0..floor(k/2+f)} ((-1)^(k+2f-j+d)*n!*(k+2f)!(2(2n-k-2f-2b-3c-4d))!) / (2^(5n-2k-2f-3b-8c-7d) * 3^(n-b-c-2d-k-f)*(2n-k-2f-2b-3c-4d)!*(k+2f-2j)!*j!*b!*c!*d!*k!*f!*(n-b-2c-2d-k-f)!). - Shanzhen Gao, Jun 05 2009
E.g.f.: (1+x-(1/3)*x^2-(1/6)*x^3)^(-1/2)*hypergeom([1/4, 3/4],[],-12*x*(x+2)*(x-1)/(x^3+2*x^2-6*x-6)^2)*exp(-x*(x^2-6)/(8*x+16)). - Mark van Hoeij, Nov 07 2011
a(n) ~ n^(2*n) * 2^(n+1/2) / (3^n * exp(2*n+15/4)). - Vaclav Kotesovec, Mar 11 2014
MAPLE
egf := (1+x-(1/3)*x^2-(1/6)*x^3)^(-1/2)*hypergeom([1/4, 3/4], [], -12*x*(x+2)*(x-1)/(x^3+2*x^2-6*x-6)^2)*exp(-x*(x^2-6)/(8*x+16));
ser := convert(series(egf, x=0, 40), polynom):
seq(coeff(ser, x, i)*i!, i=0..degree(ser)); # Mark van Hoeij, Nov 07 2011
MATHEMATICA
max = 17; f[x_] := HypergeometricPFQ[{1/4, 3/4}, {}, -12*x*(x + 2)*(x - 1)/(x^3 + 2*x^2 - 6*x - 6)^2]*Exp[-x*(x^2 - 6)/(8*x + 16)]/(1 + x - x^2/3 - x^3/6)^ (1/2); CoefficientList[Series[f[x], {x, 0, max}], x]*Range[0, max]! (* Jean-François Alcover, Jun 19 2012, from e.g.f. *)
CROSSREFS
Cf. A005814, A002829, A005816, A272905 (connected). A diagonal of A059441.
KEYWORD
nonn,nice,easy
AUTHOR
EXTENSIONS
More terms from Vladeta Jovovic, Mar 26 2001
STATUS
approved
Array read by antidiagonals: T(n,k) is the number of k-regular loopless multigraphs on n labeled nodes, n >= 0, k >= 0.
+10
9
1, 1, 1, 1, 0, 1, 1, 0, 1, 1, 1, 0, 1, 0, 1, 1, 0, 1, 1, 3, 1, 1, 0, 1, 0, 6, 0, 1, 1, 0, 1, 1, 10, 22, 15, 1, 1, 0, 1, 0, 15, 0, 130, 0, 1, 1, 0, 1, 1, 21, 158, 760, 822, 105, 1, 1, 0, 1, 0, 28, 0, 3355, 0, 6202, 0, 1, 1, 0, 1, 1, 36, 654, 12043, 93708, 190050, 52552, 945, 1, 1, 0, 1, 0, 45, 0, 36935, 0, 3535448, 0, 499194, 0, 1
OFFSET
0,20
LINKS
EXAMPLE
Array begins:
=================================================================
n\k | 0 1 2 3 4 5 6 7
----+------------------------------------------------------------
0 | 1 1 1 1 1 1 1 1 ...
1 | 1 0 0 0 0 0 0 0 ...
2 | 1 1 1 1 1 1 1 1 ...
3 | 1 0 1 0 1 0 1 0 ...
4 | 1 3 6 10 15 21 28 36 ...
5 | 1 0 22 0 158 0 654 0 ...
6 | 1 15 130 760 3355 12043 36935 100135 ...
7 | 1 0 822 0 93708 0 3226107 0 ...
8 | 1 105 6202 190050 3535448 45163496 431400774 3270643750 ...
...
PROG
(PARI)
MultigraphsByDegreeSeq(n, limit, ok)={
local(M=Map(Mat([0, 1])));
my(acc(p, v)=my(z); mapput(M, p, if(mapisdefined(M, p, &z), z+v, v)));
my(recurse(r, h, p, q, v, e) = if(!p, if(ok(x^e+q, r), acc(x^e+q, v)), my(i=poldegree(p), t=pollead(p)); self()(r, limit, p-t*x^i, q+t*x^i, v, e); for(m=1, h-i, for(k=1, min(t, (limit-e)\m), self()(r, if(k==t, limit, i+m-1), p-k*x^i, q+k*x^(i+m), binomial(t, k)*v, e+k*m)))));
for(r=1, n, my(src=Mat(M)); M=Map(); for(i=1, matsize(src)[1], recurse(n-r, limit, src[i, 1], 0, src[i, 2], 0))); Mat(M);
}
T(n, k)={if((n%2&&k%2)||(n==1&&k>0), 0, vecsum(MultigraphsByDegreeSeq(n, k, (p, r)->subst(deriv(p), x, 1)>=(n-2*r)*k)[, 2]))}
{ for(n=0, 8, for(k=0, 7, print1(T(n, k), ", ")); print) }
CROSSREFS
Rows n=4..6 are A000217(n+1), A244868 (with interspersed zeros), A244878.
Columns k=0..4 are A000012, A123023, A002137, A108243 (with interspersed zeros), A367497.
Cf. A059441 (graphs), A333157, A333330 (unlabeled nodes), A333467 (with loops).
KEYWORD
nonn,tabl
AUTHOR
Andrew Howroyd, Mar 15 2020
STATUS
approved
Number of regular graphs with loops on n labeled vertices.
+10
7
2, 4, 4, 24, 78, 1908, 23368, 1961200, 75942758, 25703384940, 4184912454930, 4462909435830552, 2245354417775573206, 10567193418810168583576, 24001585002447984453495392, 348615956932626441906675011568, 2412972383955442904868321667433106, 162906453913051798826796439651249753404
OFFSET
1,1
COMMENTS
A graph is regular if all vertices have the same degree. A loop adds 2 to the degree of its vertex.
MATHEMATICA
Table[Sum[SeriesCoefficient[Product[1+Times@@x/@s, {s, Select[Tuples[Range[n], 2], OrderedQ]}], Sequence@@Table[{x[i], 0, k}, {i, n}]], {k, 0, 2n}], {n, 6}]
PROG
(PARI) for(n=1, 10, print1(A322635(n), ", ")) \\ See A295193 for script, Andrew Howroyd, Aug 28 2019
KEYWORD
nonn
AUTHOR
Gus Wiseman, Dec 21 2018
EXTENSIONS
a(11)-a(18) from Andrew Howroyd, Aug 28 2019
STATUS
approved
Regular triangle read by rows where T(n,k) is the number of labeled simple graphs on n vertices where all non-isolated vertices have degree k.
+10
6
1, 1, 1, 1, 3, 1, 1, 9, 7, 1, 1, 25, 37, 5, 1, 1, 75, 207, 85, 21, 1, 1, 231, 1347, 525, 591, 7, 1, 1, 763, 10125, 21385, 23551, 3535, 113, 1, 1, 2619, 86173, 180201, 1216701, 31647, 30997, 9, 1, 1, 9495, 819133, 12066705, 77636583, 66620631, 11485825, 286929, 955, 1
OFFSET
1,5
LINKS
FORMULA
T(n,k) = Sum_{i=1..n} binomial(n,i)*A059441(i,k) for k > 0. - Andrew Howroyd, Dec 26 2020
EXAMPLE
Triangle begins:
1
1 1
1 3 1
1 9 7 1
1 25 37 5 1
1 75 207 85 21 1
1 231 1347 525 591 7 1
1 763 10125 21385 23551 3535 113 1
1 2619 86173 180201 1216701 31647 30997 9 1
MATHEMATICA
Table[If[k==0, 1, Sum[Binomial[n, sup]*SeriesCoefficient[Product[1+Times@@x/@s, {s, Subsets[Range[sup], {2}]}], Sequence@@Table[{x[i], 0, k}, {i, sup}]], {sup, n}]], {n, 8}, {k, 0, n-1}]
KEYWORD
nonn,tabl
AUTHOR
Gus Wiseman, Dec 17 2018
STATUS
approved
Number of regular graphs with half-edges on n labeled vertices.
+10
6
1, 2, 4, 10, 40, 278, 3554, 84590, 3776280, 317806466, 50710452574, 15414839551538, 8964708979273634, 10008446308186072290, 21518891146915893435358, 89320970210116481106835986, 717558285660687970023516336792, 11176382741327158622885664697124082, 338202509574712032788035618665293979610
OFFSET
0,2
COMMENTS
A graph is regular if all vertices have the same degree. A half-edge is like a loop except it only adds 1 to the degree of its vertex.
EXAMPLE
The a(3) = 10 edge sets:
{}
{{1},{2,3}}
{{3},{1,2}}
{{2},{1,3}}
{{1},{2},{3}}
{{1,2},{1,3},{2,3}}
{{1},{3},{1,2},{2,3}}
{{1},{2},{1,3},{2,3}}
{{2},{3},{1,2},{1,3}}
{{1},{2},{3},{1,2},{1,3},{2,3}}
MATHEMATICA
Table[Sum[SeriesCoefficient[Product[1+Times@@x/@s, {s, Union/@Select[Tuples[Range[n], 2], OrderedQ]}], Sequence@@Table[{x[i], 0, k}, {i, n}]], {k, 0, n-1}], {n, 1, 6}]
PROG
(PARI) for(n=1, 10, print1(A322698(n), ", ")) \\ See A295193 for script, Andrew Howroyd, Aug 28 2019
CROSSREFS
KEYWORD
nonn
AUTHOR
Gus Wiseman, Dec 23 2018
EXTENSIONS
a(10)-a(18) from Andrew Howroyd, Aug 28 2019
STATUS
approved

Search completed in 0.018 seconds