Displaying 1-10 of 23 results found.
Number of regular simple graphs on n labeled nodes.
+10
33
1, 2, 2, 8, 14, 172, 932, 45936, 1084414, 155862512, 10382960972, 6939278572096, 2203360500122300, 4186526756621772344, 3747344008241368443820, 35041787059691023579970848, 156277111373303386104606663422, 4142122641757598618318165240180096
EXAMPLE
A graph is regular if all vertices have the same degree. For example, the a(4) = 8 simple regular graphs are:
1 2
3 4
.
4---1 3---1 2---1
3---2 4---2 4---3
.
3---4 4---3 4---2
| | | | | |
1---2 1---2 1---3
.
4---3
| X |
2---1
(End)
MATHEMATICA
Table[Sum[SeriesCoefficient[Product[1+Times@@x/@s, {s, Subsets[Range[n], {2}]}], Sequence@@Table[{x[i], 0, k}, {i, n}]], {k, 0, n-1}], {n, 1, 9}] (* Gus Wiseman, Dec 19 2018 *)
PROG
(PARI) \\ See link for program file.
Number of trivalent (or cubic) labeled graphs with 2n nodes.
(Formerly M5346 N2324)
+10
26
1, 0, 1, 70, 19355, 11180820, 11555272575, 19506631814670, 50262958713792825, 187747837889699887800, 976273961160363172131825, 6840300875426184026353242750, 62870315446244013091262178375075, 741227949070136911068308523257857500
REFERENCES
Miklos Bona, editor, Handbook of Enumerative Combinatorics, CRC Press, 2015, p. 411.
L. Comtet, Advanced Combinatorics, Reidel, 1974, p. 279.
I. P. Goulden and D. M. Jackson, Combinatorial Enumeration, John Wiley and Sons, N.Y., 1983.
R. C. Read, Some Enumeration Problems in Graph Theory. Ph.D. Dissertation, Department of Mathematics, Univ. London, 1958.
R. W. Robinson, Numerical implementation of graph counting algorithms, AGRC Grant, Math. Dept., Univ. Newcastle, Australia, 1977.
R. W. Robinson, Computer print-out, no date. Gives first 30 terms.
N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
FORMULA
E.g.f. f(x) = Sum_{n >= 0} a(2 * n) * x^n/(2 * n)! satisfies differential equation 6 * x^2 * (-x^2 - 2 * x + 2) * (d^2/dx^2)f(x) - (x^5 + 6 * x^4 + 6 * x^3 - 32 * x + 8) * (d/dx)f(x) + (x/6) * (-x^2 - 2 * x + 2)^2 * f(x) = 0.
Recurrence: a(2 * n) = (2 * n)!/n! * v(n) where 48 * v(n) + (-72 * n^2 + 24 * n + 48) * v(n - 1) + (72 * n^3 - 432 * n^2 + 788 * n - 428) * v(n - 2) + (36 * n^4 - 324 * n^3 + 1052 * n^2 - 1428 * n + 664) * v(n - 3) + (36 * n^4 - 360 * n^3 + 1260 * n^2 - 1800 * n + 864) * v(n - 4) + (6 * n^5 - 94 * n^4 + 550 * n^3 - 1490 * n^2 + 1844 * n - 816) * v(n - 5) + (-n^5 + 15 * n^4 - 85 * n^3 + 225 * n^2 - 274 * n + 120) * v(n - 6) = 0. (End)
a(n) = Sum_{i=0..2n} Sum_{k=0..min(floor((3n-i)/3), floor((2n-i)/2))} Sum_{j=0..min(floor(3n-i-3k)/2), floor((2n-i-2k)/2))} ((-1)^(i+j)*(2n)!(2*(3n-i-2j-3k))!)/(2^(5n-i-2j-4k)*3^(2n-i-2j-k)*(3n-i-2j-3k)!i!j!k!(2n-i-2j-2k)!). - Shanzhen Gao, Jun 05 2009
E.g.f.: hypergeom([1/6, 5/6],[],12*x/(x^2+8*x+4)^(3/2))*exp(-log(1/4*x^2+2*x+1)/4 - x/3 + (x^2+8*x+4)^(3/2)/(24*x) - 1/(3*x) - x^2/24 - 1). Multiply x^i by (2*i)! to get the generating function. - Mark van Hoeij, Nov 07 2011
D-finite with recurrence: 3*(3*n-7)*(3*n-4)*a(n) = 9*(n-1)*(2*n-1)*(3*n-7)*(3*n^2 - 4*n + 2)*a(n-1) + (n-1)*(2*n-3)*(2*n-1)*(108*n^3 - 441*n^2 + 501*n - 104)*a(n-2) + 2*(n-2)*(n-1)*(2*n-5)*(2*n-3)*(2*n-1)*(3*n-1)*(9*n^2 - 42*n + 43)*a(n-3) - 2*(n-3)*(n-2)*(n-1)*(2*n-7)*(2*n-5)*(2*n-3)*(2*n-1)*(3*n-4)*(3*n-1)*a(n-4). - Vaclav Kotesovec, Mar 11 2014
MAPLE
A002829aux := proc(i) local a, j, k ; a := 0 ; for j from 0 to i do for k from 0 to 2*(i-j) do a := a+(-1)^(j+k)/j!*doublefactorial(2*i+2*k-1)/3^k/k!/(2*i-2*j-k)! ; end do: end do: a*3^i/2^i ; end proc:
A002829 := proc(n) (2*n)!/6^n*add( A002829aux(i)/(n-i)!, i=0..n) ; end proc: seq( A002829(n), n=0..6) ; (End)
egf := hypergeom([1/6, 5/6], [], 12*x/(x^2+8*x+4)^(3/2)) * exp(-ln(1/4*x^2+2*x+1)/4 - x/3 + (x^2+8*x+4)^(3/2)/(24*x) - 1/(3*x) - x^2/24 - 1):
ser := convert(series(egf, x=0, 30), polynom):
seq(coeff(ser, x, i) * (2*i)!, i=0..degree(ser)); # Mark van Hoeij, Nov 07 2011
MATHEMATICA
Flatten[{1, RecurrenceTable[{2 (-3+n) (-2+n) (-1+n) (-7+2 n) (-5+2 n) (-3+2 n) (-1+2 n) (-4+3 n) (-1+3 n) a[-4+n]-2 (-2+n) (-1+n) (-5+2 n) (-3+2 n) (-1+2 n) (-1+3 n) (43-42 n+9 n^2) a[-3+n]-(-1+n) (-3+2 n) (-1+2 n) (-104+501 n-441 n^2+108 n^3) a[-2+n]-9 (-1+n) (-1+2 n) (-7+3 n) (2-4 n+3 n^2) a[-1+n]+3 (-7+3 n) (-4+3 n) a[n]==0, a[1]==0, a[2]==1, a[3]==70, a[4]==19355}, a, {n, 1, 15}]}] (* Vaclav Kotesovec, Mar 11 2014 *)
terms = 14;
egf = HypergeometricPFQ[{1/6, 5/6}, {}, 12x/(x^2 + 8x + 4)^(3/2)] Exp[-Log[ 1/4 x^2 + 2x + 1]/4 - x/3 + (x^2 + 8x + 4)^(3/2)/(24x) - 1/(3x) - x^2/24 - 1] + O[x]^terms;
PROG
(PARI) a(n) = sum(i=0, 2*n, sum(k=0, min(floor((3*n-i)/3), floor((2*n-i)/2)), sum(j=0, min(floor((3*n-i-3*k)/2), floor((2*n-i-2*k)/2)), ((-1)^(i+j)*(2*n)!*(2*(3*n-i-2*j-3*k))!)/(2^(5*n-i-2*j-4*k)*3^(2*n-i-2*j-k)*(3*n-i-2*j-3*k)!*i!*j!*k!*(2*n-i-2*j-2*k)!)))); \\ Michel Marcus, Jan 18 2018
CROSSREFS
See A004109 for connected graphs of this type.
Number of clouds with n points; number of undirected 2-regular labeled graphs; or number of n X n symmetric matrices with (0,1) entries, trace 0 and all row sums 2.
(Formerly M2937 N1181)
+10
25
1, 0, 0, 1, 3, 12, 70, 465, 3507, 30016, 286884, 3026655, 34944085, 438263364, 5933502822, 86248951243, 1339751921865, 22148051088480, 388246725873208, 7193423109763089, 140462355821628771, 2883013994348484940
COMMENTS
a(n) is the number of ways of covering K_n with cycles of length >= 3. Also number of 'frames' on n lines: given n lines in general position (none parallel and no three concurrent), a frame is a subset of n of the e C(n,2) points of intersection such that no three points are on the same line. - Mitch Harris, Jul 06 2006
REFERENCES
Miklos Bona, editor, Handbook of Enumerative Combinatorics, CRC Press, 2015, p. 410-411.
L. Comtet, Advanced Combinatorics, Reidel, 1974, p. 276 and 279.
S. R. Finch, Mathematical Constants, Cambridge, 2003, Section 5.6.7.
Ph. Flajolet, Singular combinatorics, pp. 561-571, Proc. Internat. Congr. Math., Beijing 2002, Higher Education Press, Beijing, 2002, Vol III.
I. P. Goulden and D. M. Jackson, Combinatorial Enumeration, John Wiley and Sons, N.Y., 1983, ex. 3.3.6b, 3.3.34.
N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
R. P. Stanley, Enumerative Combinatorics, Cambridge, Vol. 2, 1999; see Example 5.2.8. Also problems 5.23 and 5.15(a), case k=3.
Z. Tan and S. Gao, Enumeration of (0,1)-Symmetric Matrices, submitted [From Shanzhen Gao, Jun 05 2009] [apparently unpublished as of 2016]
H. S. Wilf, Generatingfunctionology, Academic Press, NY, 1990, p. 77, Eq. 3.9.1.
W. A. Whitworth, Choice and Chance, Bell, 1901, p. 269, ex. 160.
FORMULA
a(n) ~ n!*exp(-3/4)/sqrt(Pi*n).
E.g.f.: exp(-x/2-x^2/4)/sqrt(1-x).
D-finite with recurrence a(n+1) = n*(a(n)+a(n-2)*(n-1)/2).
1/4^n * Sum_{b=0..floor(n/2)} Sum_{g=0..n-2*b} (-1)^(b+g) * 2^(2b+g) * n! * (2n-4b-2g)! / (b! * g! * (n-2b-g)!^2). - Shanzhen Gao, Jun 05 2009
a(n) = (-1)^n*n!*Sum_{k=0..n}(3/4)^k*binomial(-1/2, n - k)*hypergeom([1/2, -k], [1/2 - n + k], 1/3)/ k!. - Peter Luschny, Aug 26 2017
MAPLE
a := n -> (-1)^n*n!*add((3/4)^k*binomial(-1/2, n-k)*hypergeom([1/2, -k], [1/2-n+k], 1/3)/ k!, k=0..n): seq(simplify(a(n)), n=0..21); # Peter Luschny, Aug 26 2017
MATHEMATICA
m = 21; CoefficientList[ Series[ Exp[-x/2 - x^2/4] / Sqrt[1-x], {x, 0, m}], x]*Table[n!, {n, 0, m}] (* Jean-François Alcover, Jun 21 2011, after e.g.f. *)
PROG
(PARI) a(n)=if(n<0, 0, n!*polcoeff(exp(-x/2-x^2/4+x*O(x^n))/sqrt(1-x+x*O(x^n)), n))
(Maxima)
a(n):=sum(sum(binomial(k, i)*binomial(i-1/2, n-k)*(3^(k-i)*n!)/(4^k*k!)*(-1)^(n-i), i, 0, k), k, 0, n);
Triangle read by rows: T(n,r) is the number of not necessarily connected r-regular graphs with n nodes, 0 <= r < n.
+10
24
1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 0, 1, 0, 1, 1, 1, 2, 2, 1, 1, 1, 0, 2, 0, 2, 0, 1, 1, 1, 3, 6, 6, 3, 1, 1, 1, 0, 4, 0, 16, 0, 4, 0, 1, 1, 1, 5, 21, 60, 60, 21, 5, 1, 1, 1, 0, 6, 0, 266, 0, 266, 0, 6, 0, 1, 1, 1, 9, 94, 1547, 7849, 7849, 1547, 94, 9, 1, 1, 1, 0, 10, 0, 10786, 0, 367860, 0, 10786
COMMENTS
A graph in which every node has r edges is called an r-regular graph. The triangle is symmetric because if an n-node graph is r-regular, than its complement is (n - 1 - r)-regular and two graphs are isomorphic if and only if their complements are isomorphic.
Terms may be computed without generating each graph by enumerating the number of graphs by degree sequence. A PARI program showing this technique for graphs with labeled vertices is given in A295193. Burnside's lemma can be used to extend this method to the unlabeled case. - Andrew Howroyd, Mar 08 2020
EXAMPLE
T(8,3) = 6. Edge-lists for the 6 3-regular 8-node graphs:
Graph 1: 12, 13, 14, 23, 24, 34, 56, 57, 58, 67, 68, 78
Graph 2: 12, 13, 14, 24, 34, 26, 37, 56, 57, 58, 68, 78
Graph 3: 12, 13, 23, 14, 47, 25, 58, 36, 45, 67, 68, 78
Graph 4: 12, 13, 23, 14, 25, 36, 47, 48, 57, 58, 67, 68
Graph 5: 12, 13, 24, 34, 15, 26, 37, 48, 56, 57, 68, 78
Graph 6: 12, 23, 34, 45, 56, 67, 78, 18, 15, 26, 37, 48.
Triangle starts
1;
1, 1;
1, 0, 1;
1, 1, 1, 1;
1, 0, 1, 0, 1;
1, 1, 2, 2, 1, 1;
1, 0, 2, 0, 2, 0, 1;
1, 1, 3, 6, 6, 3, 1, 1;
1, 0, 4, 0, 16, 0, 4, 0, 1;
1, 1, 5, 21, 60, 60, 21, 5, 1, 1;
1, 0, 6, 0, 266, 0, 266, 0, 6, 0, 1;
1, 1, 9, 94, 1547, 7849, 7849, 1547, 94, 9, 1, 1;
...
EXTENSIONS
Description corrected (changed 'orders' to 'degrees') by Jason Kimberley, Sep 06 2009
Extended to the sixteenth row (in the b-file) by Jason Kimberley, Sep 24 2009
Triangle read by rows: T(n,k) is the number of n X n symmetric binary matrices with k ones in every row and column.
+10
15
1, 1, 1, 1, 2, 1, 1, 4, 4, 1, 1, 10, 18, 10, 1, 1, 26, 112, 112, 26, 1, 1, 76, 820, 1760, 820, 76, 1, 1, 232, 6912, 35150, 35150, 6912, 232, 1, 1, 764, 66178, 848932, 1944530, 848932, 66178, 764, 1, 1, 2620, 708256, 24243520, 133948836, 133948836, 24243520, 708256, 2620, 1
COMMENTS
T(n,k) is the number of k-regular symmetric relations on n labeled nodes.
T(n,k) is the number of k-regular graphs with half-edges on n labeled vertices.
Terms may be computed without generating all graphs by enumerating the number of graphs by degree sequence. A PARI program showing this technique is given below. Burnside's lemma as applied in A122082 and A000666 can be used to extend this method to the case of unlabeled vertices A333159 and A333161 respectively.
EXAMPLE
Triangle begins:
1,
1, 1;
1, 2, 1;
1, 4, 4, 1;
1, 10, 18, 10, 1;
1, 26, 112, 112, 26, 1;
1, 76, 820, 1760, 820, 76, 1;
1, 232, 6912, 35150, 35150, 6912, 232, 1;
1, 764, 66178, 848932, 1944530, 848932, 66178, 764, 1;
...
PROG
(PARI) \\ See script in A295193 for comments.
GraphsByDegreeSeq(n, limit, ok)={
local(M=Map(Mat([x^0, 1])));
my(acc(p, v)=my(z); mapput(M, p, if(mapisdefined(M, p, &z), z+v, v)));
my(recurse(r, p, i, q, v, e) = if(e<=limit && poldegree(q)<=limit, if(i<0, if(ok(x^e+q, r), acc(x^e+q, v)), my(t=polcoeff(p, i)); for(k=0, t, self()(r, p, i-1, (t-k+x*k)*x^i+q, binomial(t, k)*v, e+k)))));
for(k=2, n, my(src=Mat(M)); M=Map(); for(i=1, matsize(src)[1], my(p=src[i, 1]); recurse(n-k, p, poldegree(p), 0, src[i, 2], 0))); Mat(M);
}
Row(n)={my(M=GraphsByDegreeSeq(n, n\2, (p, r)->poldegree(p)-valuation(p, x) <= r + 1), v=vector(n+1)); for(i=1, matsize(M)[1], my(p=M[i, 1], d=poldegree(p)); v[1+d]+=M[i, 2]; if(pollead(p)==n, v[2+d]+=M[i, 2])); for(i=1, #v\2, v[#v+1-i]=v[i]); v}
Number of 4-valent labeled graphs with n nodes.
(Formerly M4991)
+10
13
1, 0, 0, 0, 0, 1, 15, 465, 19355, 1024380, 66462606, 5188453830, 480413921130, 52113376310985, 6551246596501035, 945313907253606891, 155243722248524067795, 28797220460586826422720
REFERENCES
Miklos Bona, editor, Handbook of Enumerative Combinatorics, CRC Press, 2015, p. 411.
L. Comtet, Advanced Combinatorics, Reidel, 1974, p. 279.
I. P. Goulden and D. M. Jackson, Combinatorial Enumeration, John Wiley and Sons, N.Y., 1983.
N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
FORMULA
E.g.f. f(x) = Sum_{n >= 0} a(n)*x^n/(n)! satisfies the differential equation 16*x^2*(x - 1)^2*(x + 2)^2*(x^5 + 2*x^4 + 2*x^2 + 8*x - 4)*(d^2/dx^2)y(x) - 4*(x^13 + 4*x^12 - 16*x^10 - 10*x^9 - 36*x^8 - 220*x^7 - 348*x^6 - 48*x^5 + 200*x^4 - 336*x^3 - 240*x^2 + 416*x - 96)*(d/dx)y(x) - x^4*(x^5 + 2*x^4 + 2*x^2 + 8*x - 4)^2*y(x) = 0.
Recurrence: a(n) = - 1/384*(( - 256*n^2 - 896*n + 1152)*a(n - 1) + (768*n^3 - 3648*n^2 + 5568*n - 2688)*a(n - 2) + ( - 192*n^4 + 3264*n^3 - 14784*n^2 + 24384*n - 12672)*a(n - 3) + (224*n^6 - 4512*n^5 + 36304*n^4 - 148160*n^3 + 320016*n^2 - 341728*n + 137856)*a(n - 5) + ( - 640*n^5 + 8800*n^4 - 46400*n^3 + 116000*n^2 - 135360*n + 57600)*a(n - 4) + ( - 24*n^10 + 1320*n^9 - 31680*n^8 + 435600*n^7 - 3786552*n^6 + 21649320*n^5 - 82006320*n^4 + 201828000*n^3 - 306085824*n^2 + 255087360*n - 87091200)*a(n - 11) + (64*n^10 - 3480*n^9 + 82692*n^8 - 1127232*n^7 + 9726024*n^6 - 55255032*n^5 + 208179908*n^4 - 510068208*n^3 + 770738352*n^2 - 640484928*n + 218211840)*a(n - 9) + (16*n^11 - 992*n^10 + 27256*n^9 - 437160*n^8 + 4536288*n^7 - 31876656*n^6 + 154182488*n^5 - 510784360*n^4 + 1128552896*n^3 - 1570313952*n^2 + 1223830656*n - 397716480)*a(n - 10) + ( - 128*n^8 + 5488*n^7 - 94576*n^6 + 864976*n^5 - 4606672*n^4 + 14604352*n^3 - 26753984*n^2 + 25611264*n - 9630720)*a(n - 7) + (16*n^9 - 576*n^8 + 8704*n^7 - 71680*n^6 + 348880*n^5 - 1013824*n^4 + 1673376*n^3 - 1333120*n^2 + 226944*n + 161280)*a(n - 8) + (128*n^7 - 2192*n^6 + 12048*n^5 - 8240*n^4 - 151248*n^3 + 565312*n^2 - 765248*n + 349440)*a(n - 6) + ( - 4*n^13 + 364*n^12 - 14924*n^11 + 364364*n^10 - 5897892*n^9 + 66678612*n^8 - 540145892*n^7 + 3163772612*n^6 - 13344475144*n^5 + 39830815024*n^4 - 81255012384*n^3 + 106386868224*n^2 - 79211036160*n + 24908083200)*a(n - 14) + ( - 4*n^13 + 360*n^12 - 14612*n^11 + 353496*n^10 - 5674812*n^9 + 63680760*n^8 - 512439356*n^7 + 2983811688*n^6 - 12520194544*n^5 + 37201987680*n^4 - 75598952832*n^3 + 98660630016*n^2 - 73265264640*n + 22992076800)*a(n - 13) + ( - 16*n^12 + 1244*n^11 - 43208*n^10 + 884620*n^9 - 11860728*n^8 + 109396452*n^7 - 709293464*n^6 + 3243764260*n^5 - 10331326456*n^4 + 22203205904*n^3 - 30301280928*n^2 + 23300910720*n - 7504358400)*a(n - 12) + ( - n^14 + 105*n^13 - 5005*n^12 + 143325*n^11 - 2749747*n^10 + 37312275*n^9 - 368411615*n^8 + 2681453775*n^7 - 14409322928*n^6 + 56663366760*n^5 - 159721605680*n^4 + 310989260400*n^3 - 392156797824*n^2 + 283465647360*n - 87178291200)*a(n - 15)). (End)
a(n) = Sum_{d=0..floor(n/2), c=0..floor(n/2-d), b=0..(n-2c-2d), f=0..(n-2c-2d-b), k=0..min(n-b-2c-2d-f, 2n-2f-2b-3c-4d), j=0..floor(k/2+f)} ((-1)^(k+2f-j+d)*n!*(k+2f)!(2(2n-k-2f-2b-3c-4d))!) / (2^(5n-2k-2f-3b-8c-7d) * 3^(n-b-c-2d-k-f)*(2n-k-2f-2b-3c-4d)!*(k+2f-2j)!*j!*b!*c!*d!*k!*f!*(n-b-2c-2d-k-f)!). - Shanzhen Gao, Jun 05 2009
E.g.f.: (1+x-(1/3)*x^2-(1/6)*x^3)^(-1/2)*hypergeom([1/4, 3/4],[],-12*x*(x+2)*(x-1)/(x^3+2*x^2-6*x-6)^2)*exp(-x*(x^2-6)/(8*x+16)). - Mark van Hoeij, Nov 07 2011
a(n) ~ n^(2*n) * 2^(n+1/2) / (3^n * exp(2*n+15/4)). - Vaclav Kotesovec, Mar 11 2014
MAPLE
egf := (1+x-(1/3)*x^2-(1/6)*x^3)^(-1/2)*hypergeom([1/4, 3/4], [], -12*x*(x+2)*(x-1)/(x^3+2*x^2-6*x-6)^2)*exp(-x*(x^2-6)/(8*x+16));
ser := convert(series(egf, x=0, 40), polynom):
seq(coeff(ser, x, i)*i!, i=0..degree(ser)); # Mark van Hoeij, Nov 07 2011
MATHEMATICA
max = 17; f[x_] := HypergeometricPFQ[{1/4, 3/4}, {}, -12*x*(x + 2)*(x - 1)/(x^3 + 2*x^2 - 6*x - 6)^2]*Exp[-x*(x^2 - 6)/(8*x + 16)]/(1 + x - x^2/3 - x^3/6)^ (1/2); CoefficientList[Series[f[x], {x, 0, max}], x]*Range[0, max]! (* Jean-François Alcover, Jun 19 2012, from e.g.f. *)
Array read by antidiagonals: T(n,k) is the number of k-regular loopless multigraphs on n labeled nodes, n >= 0, k >= 0.
+10
9
1, 1, 1, 1, 0, 1, 1, 0, 1, 1, 1, 0, 1, 0, 1, 1, 0, 1, 1, 3, 1, 1, 0, 1, 0, 6, 0, 1, 1, 0, 1, 1, 10, 22, 15, 1, 1, 0, 1, 0, 15, 0, 130, 0, 1, 1, 0, 1, 1, 21, 158, 760, 822, 105, 1, 1, 0, 1, 0, 28, 0, 3355, 0, 6202, 0, 1, 1, 0, 1, 1, 36, 654, 12043, 93708, 190050, 52552, 945, 1, 1, 0, 1, 0, 45, 0, 36935, 0, 3535448, 0, 499194, 0, 1
EXAMPLE
Array begins:
=================================================================
n\k | 0 1 2 3 4 5 6 7
----+------------------------------------------------------------
0 | 1 1 1 1 1 1 1 1 ...
1 | 1 0 0 0 0 0 0 0 ...
2 | 1 1 1 1 1 1 1 1 ...
3 | 1 0 1 0 1 0 1 0 ...
4 | 1 3 6 10 15 21 28 36 ...
5 | 1 0 22 0 158 0 654 0 ...
6 | 1 15 130 760 3355 12043 36935 100135 ...
7 | 1 0 822 0 93708 0 3226107 0 ...
8 | 1 105 6202 190050 3535448 45163496 431400774 3270643750 ...
...
PROG
(PARI)
MultigraphsByDegreeSeq(n, limit, ok)={
local(M=Map(Mat([0, 1])));
my(acc(p, v)=my(z); mapput(M, p, if(mapisdefined(M, p, &z), z+v, v)));
my(recurse(r, h, p, q, v, e) = if(!p, if(ok(x^e+q, r), acc(x^e+q, v)), my(i=poldegree(p), t=pollead(p)); self()(r, limit, p-t*x^i, q+t*x^i, v, e); for(m=1, h-i, for(k=1, min(t, (limit-e)\m), self()(r, if(k==t, limit, i+m-1), p-k*x^i, q+k*x^(i+m), binomial(t, k)*v, e+k*m)))));
for(r=1, n, my(src=Mat(M)); M=Map(); for(i=1, matsize(src)[1], recurse(n-r, limit, src[i, 1], 0, src[i, 2], 0))); Mat(M);
}
T(n, k)={if((n%2&&k%2)||(n==1&&k>0), 0, vecsum(MultigraphsByDegreeSeq(n, k, (p, r)->subst(deriv(p), x, 1)>=(n-2*r)*k)[, 2]))}
{ for(n=0, 8, for(k=0, 7, print1(T(n, k), ", ")); print) }
Number of regular graphs with loops on n labeled vertices.
+10
7
2, 4, 4, 24, 78, 1908, 23368, 1961200, 75942758, 25703384940, 4184912454930, 4462909435830552, 2245354417775573206, 10567193418810168583576, 24001585002447984453495392, 348615956932626441906675011568, 2412972383955442904868321667433106, 162906453913051798826796439651249753404
COMMENTS
A graph is regular if all vertices have the same degree. A loop adds 2 to the degree of its vertex.
MATHEMATICA
Table[Sum[SeriesCoefficient[Product[1+Times@@x/@s, {s, Select[Tuples[Range[n], 2], OrderedQ]}], Sequence@@Table[{x[i], 0, k}, {i, n}]], {k, 0, 2n}], {n, 6}]
CROSSREFS
Cf. A000666, A054921, A059441, A295193, A299353, A306017, A306021, A319189, A319190, A319612, A322659, A322661.
Regular triangle read by rows where T(n,k) is the number of labeled simple graphs on n vertices where all non-isolated vertices have degree k.
+10
6
1, 1, 1, 1, 3, 1, 1, 9, 7, 1, 1, 25, 37, 5, 1, 1, 75, 207, 85, 21, 1, 1, 231, 1347, 525, 591, 7, 1, 1, 763, 10125, 21385, 23551, 3535, 113, 1, 1, 2619, 86173, 180201, 1216701, 31647, 30997, 9, 1, 1, 9495, 819133, 12066705, 77636583, 66620631, 11485825, 286929, 955, 1
EXAMPLE
Triangle begins:
1
1 1
1 3 1
1 9 7 1
1 25 37 5 1
1 75 207 85 21 1
1 231 1347 525 591 7 1
1 763 10125 21385 23551 3535 113 1
1 2619 86173 180201 1216701 31647 30997 9 1
MATHEMATICA
Table[If[k==0, 1, Sum[Binomial[n, sup]*SeriesCoefficient[Product[1+Times@@x/@s, {s, Subsets[Range[sup], {2}]}], Sequence@@Table[{x[i], 0, k}, {i, sup}]], {sup, n}]], {n, 8}, {k, 0, n-1}]
CROSSREFS
Cf. A000569, A005176, A058891, A059441, A295193, A301481, A306017, A306019, A306021, A319169, A319190, A319612.
Number of regular graphs with half-edges on n labeled vertices.
+10
6
1, 2, 4, 10, 40, 278, 3554, 84590, 3776280, 317806466, 50710452574, 15414839551538, 8964708979273634, 10008446308186072290, 21518891146915893435358, 89320970210116481106835986, 717558285660687970023516336792, 11176382741327158622885664697124082, 338202509574712032788035618665293979610
COMMENTS
A graph is regular if all vertices have the same degree. A half-edge is like a loop except it only adds 1 to the degree of its vertex.
EXAMPLE
The a(3) = 10 edge sets:
{}
{{1},{2,3}}
{{3},{1,2}}
{{2},{1,3}}
{{1},{2},{3}}
{{1,2},{1,3},{2,3}}
{{1},{3},{1,2},{2,3}}
{{1},{2},{1,3},{2,3}}
{{2},{3},{1,2},{1,3}}
{{1},{2},{3},{1,2},{1,3},{2,3}}
MATHEMATICA
Table[Sum[SeriesCoefficient[Product[1+Times@@x/@s, {s, Union/@Select[Tuples[Range[n], 2], OrderedQ]}], Sequence@@Table[{x[i], 0, k}, {i, n}]], {k, 0, n-1}], {n, 1, 6}]
Search completed in 0.018 seconds
|