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THE HAMMOND SERIES OF A SYMMETRIC FUNCTION AND ITS
APPLICATION TO P-RECURSIVENESS*

I. P. GOULDEN,t D. M. JACKSONt AND J. W. REILLY

Abstract. We give a method for determining the exponential generating function for the coefficient
of x" x,P in a symmetric function S in the indeterminates x 1, ",x,. This generating function is called
the Hammond series of S, and we use it to show that the counting series for certain combinatorial problems
satisfy linear recurrence equations with polynomial coefficients. These problems include p-regular labelled
graphs and square matrices with row and column sums equal to p.

1. Introduction. Let [(a a)(b b)... IT denote the coefficient of
(a a )(b b). in the formal power series T which is a symmetric function
in each of the sets {a 1, , an}, {b l, , b}’ of commutative indeterminates. We
call such coefficients the regular coefficients of T. In this paper we present a method
for calculating the exponential generating function for regular coefficients, where
p, q,... are fixed. We call this power series the Hammond series (or H-series) of T,
because of its connection to the Hammond operators.

In the later sections of this paper we use the H-series to determine whether
certain sequences of regular coefficients satisfy a linear recurrence equation of fixed
order, with polynomial coefficients. Such sequences are called polynomially-recursive
(or P-recursive). This term is of considerable importance computationally since it
means that the nth term of such a sequence may be computed in an amount of time
which is linear in n and space which is independent of n (assuming that the time
taken to multiply two integers is independent of their size).

We establish P-recursiveness for a sequence by deriving a linear differential
equation, with polynomial coefficients, for its H-series. Power series with this property
are called differentially-linite (or D-finite). The equivalence of D-finiteness and P-
recursiveness is discussed in Stanley [6].

Regular coefficients arise in a variety of contexts and the problem of calculating
them is a classical one which has been considered by MacMahon [3] in his combinatorial
work on symmetric functions. We use the H-series to study two combinatorial configur-
ations, namely

a) p-regular labelled graphs and simple graphs on n vertices for n 0, 1, 2 and
b) n n matrices with row and column sums p over the nonnegative integers for

n =0, 1,2,....
This enables us to establish the P-recursiveness of (a) for p 4 and (b) for p 3,

an open problem cited by Stanley [6].
The following notation is used. Let x (x l, x2,’’’ and y (y l, y2,"" ") be sets

of indeterminates. If i= (il, i,... ), then x denotes xlx... and [xi]/(x) denotes the
coefficient of x in the formal power series f(x). Let 0/0y denote (0/0y l, 0/0yz’’ ").
We say that i=>j, where (h,h,"" "), if il h, iz >=/’:, "’’.

We begin by considering an arbitrary symmetric formal power series T in the
single set t= (tl, tz,...) of commutative indeterminates, since the extension to the
multisymmetric case is straightforward. Let z(il, i2,.. (h, h, ") J, where ]k is
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180 I. P. GOULDEN, D. M. JACKSON AND J. W. REILLY

the number of occurrences of k in (il, i2,"" ’). We define the H-series of T(t) to be
the formal power series g, in the indeterminates y (yl, y2, ), such that

[Y’]. g(y)= [t’]T(t),

where j! =/’1!/’2!’" ". The H-series, g, of T is denoted by H(T).
For regular coefficients, we observe that

[z][t t]T(t)= . f(z),

where f(z)=(H(T))(O,..., 0, z, 0,...), where z occurs as the pth argument. The
H-series therefore enables us to obtain a univariate exponential generating function
for the regular coefficients of the multivariate generating function T.

2. The H-series. Let Sk --tk + t +’’’ and let s (s l, $2,""" ), where Sk is called
a powersum symmetric function. Now the symmetric power series T(t) can be expressed
uniquely in terms of the power sum symmetric functions, to give T(t)= G(s(t)). We
adopt the notational convention that the H-series, H(T)(y), of T(t) may also be
denoted by H(G)(y) without ambiguity, since G and T are used only in this context.

The next theorem enables us to express the H-series for OG/Os, and s,G in terms
of the H-series for G. We shall use this theorem later to deduce a system of differential
equations for H(G)(y) from a system for G(s). It happens that the latter system is
often easy to derive.

THEOREM (H-series). Let g(y) be the H-series for a symmetric function T(t) and
let T(t) G (s(t)). Then

1)
,,,_,I O’

\0-./ (y) ,_->oE (-1) (m 1)!--Oy, g(Y)’

where m il + i2 +" and the summation is over (il, i2, such that il + 2i2 +
n.

2) (H(s,G))(y) y, + . y,+, g(y).
i>_l

Proof. 1) Let At(t) denote the monomial symmetric function defined by

At(t)= E tl=[xt] 1-I (l+xlt+x2t+’’’).
|-->0 k _-->

"r(i) =i

Since T(t) is a symmetric function in t, t2, there exist c (i), independent of t, such
that

whence

T(t)= Y’. c(i)At(t)

H(T)(y) E c (i) .D
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THE HAMMOND SERIES AND P-RECURSIVENESS 181

Let E,(x)= s=o (-1)"-l(m- 1)!xS/i!, where m and the range of summation are
defined in 1). Then .,-1E,(x)z" log (1 + zxl + z2x2 +" ), so that

E As(t)xs= I-[ (l+xlti+xzt +...)=exp E log (l+xlti+x2t +’’’)
i->O il il

exp E E E.(x)t exp E E. (x)s. (t).
i->-I nl n=>l

From this we obtain

x 0 0 0

s-_>-o
As(t)= ,->oE xSAs(t) exp .=IEE. (x)s.

E. (x) exp E. (x)s. E. (x) E Ai(t)xi.
nl jO

The application of Ix] to this equation yields

---As(t)= E Ai(t)[xS-’]E.(x).(2.1)

Thus

so from (2.1) we have

\O-- so c(i)H As(t),

\-./ X c(i) E {[xs-’]E.(xl}H(Ai(t))
i=>O ji

X c (i) X [xS-i]E. (x)y’/j!
io ji

0-

Now let - since . Thus

H(OG 0k

\--.1 X c(i) X [x]E.(x) (y’/i!)
i=o =o y

kY. [xk]E. (x) ’. c (i)yS/i!
k>o Oyk t_o

E,,I-=-IH(T) and 1) follows.
\0y/

2) Let 8, (0, , 0, 1, 0, ), where the one appears in the nth position. Thus,
by definition we have

’(! . "r(j)=l

E E X 1+]1x/22+/2 ..,
,r(1)=. -(j) =i

where (11, 12, and (]1,/’_, ). Now the effect of is to change a single kth
power in to a (k + n)th power, for some k, in all possible ways. Each of the resulting
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182 I. P. GOULDEN, D. M. JACKSON AND J. W. REILLY

monomials may be obtained in i,/k + 1 ways. Thus, if m (m 1, ),

s,,A= E (1 +i,+t,) E x’x’ ...+(1 +i,,)
k => ’(m) i+15,, +k -lk ’(m)

and

H s. io c (i)Ai C. y, H(G),

X1 X2

where C, (y, O/Oy) y, + Yi_->l y,+i O/Oyi. The result follows immediately. [3
It follows from the H-series theorem that H(s O]I/Os{ G)=

C (y, 0/0y)... E/x (0/0y) H(G). Thus any differential equation for G(s) may be
translated, by means of the H-series theorem, into a differential equation for H(G).
We note that C, (y, 0/0y) and E, are reminiscent of Hammond operators for symmetric
functions (MacMahon [3] and Hammond [2]).

3. Preliminary application. In this section and 4 and 5 we consider the enumer-
ation of p-regular labelled graphs and simple graphs. We now set up a system of
differential equations for labelled simple graphs and demonstrate the use of the
H-series theorem for the 2-regular case.

Let T(t) be the ordinary generating function for simple labelled graphs, where t]
marks the degree of vertex ] for ] _-> 1. The generating function for the pair {i, ]} of
distinct vertices is 1 + tt] since if and] are not joined by an edge there is no contribution
to the degrees of and ], while if they are then there is a contribution of 1 to each
of the degrees of and ]. Thus

T(t) I’I (1 + t,tj).
l<=i<]

We next derive G(s), where G(s(t))= T(t). Now

T(t) exp log l-I (1 + tit]) exp (-1
l<--_i<] k =1 l<=i<]

1 )_ (t)},=exp1 -(-1 l{s(t)-sz

1  _l{sG(s) exp (-1) -szt,}.

whence

The system of differential equations which G(s) satisfies is

0G 1
=S2k+lG fork->_0,
OS2k+l 2k + l

(3.)
1

0szk 2-- {(-1)k -sz}G for k -> 1.

This is the general system of equations for labelled simple graphs. For the moment
we confine our attention to 2-regular simple graphs.

Let rz(n) denote the number of 2-regular simple labelled graphs on n vertices.
Then

r:(n) [t t]T(t) [Y] U(yl, y),
Ln!.l
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THE HAMMOND SERIES AND P-RECURSIVENESS 183

where U(yl, y2)=H(G) (yl, y2, 0,...). Thus, applying the H-series theorem to T(t)
and setting Y3 Y4 0, we have

OU OU OU 2U
yiU + y2, 2 -U-y2U.

Eliminating OU/Oy and O2U/Oy and then setting y=0, we have dV/dy2
{(1-y2)-l-(l+y2)}V/2 and r2(n)=[yz/n!]V, where V(y2) U(0, y2) and V(0)= 1.
Since V is differentiably finite (or D-finite) it follows (Stanley [6, Thm. 1.5]) that
{r2(n)ln _->0} is P-recursive. Indeed, applying [yz/n l] to both sides of this ordinary
differential equation for V we have

2r2(n + 1)-2nr2(n)-n(n 1)rz(n -2)=0,

where r2(0)= 1 and r2(k)= 0 for k < 0. We note that we may solve the differential
equation to obtain

V(y2)=(l_y2)_X/2exp{ y2 !.}2

the well-known generating function for the number of cycle covers of the complete
graph on n vertices. This may, of course, be obtained by a direct argument, but its
derivation here has illustrated the use of the H-series.

It is important to note that the ordinary generating function for labelled graphs
is, by a similar argument,

where

T’(t) I-I (1 t,ti)- O’(s(t)),
li<j

G’(s)=exp E 2-{s(t)+S2k(t)}.
The system of differential equations associated with G’(s) is

(3.2)

OG’ 1
=s2k+G’ fork_->O,
(952k+1 2k +1

OG’ 1

Os2 2k
{1 + s2}G’ for k _-> 1.

Systems (3.1) and (3.2) are strongly related to each other. Accordingly, in 4 we
shall give certain details for calculations with (3.1) but totally suppress the correspond-
ing details for calculations with (3.2) since they are similar.

4. The P-recursiveness of the numbers of 3- and 4-regular labelled graphs and
simple graphs on n vertices. Let rv(n) be the number of p-regular simple labelled
graphs on n vertices. We apply the method of 3 to the cases p 3 and 4 to derive
differential equations with polynomial coefficients for Y’.,->o r,(n)(x"/n !). The calcula-
tions are of course more prolonged, and we have suppressed their details because
they add nothing of conceptual importance to the argument.
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184 I. P. GOULDEN, D. M. JACKSON AND J, W. REILLY

We consider first the case p 3. Applying the H-series theorem to system (3.1)
for G(s) and putting Y4 Y5 0, we have

0A(3) 0A (3)

a)
0A(3) ylA(3)+ Y2 0yl

+ Y3 ’0y2

(4.1) b) 20A
(3) 02A(3) OA(3)

-(1+y2)A(3)-y3

OAt O:Aa OaA
c) 3 oY3 3 ’’ 0y +’0Y13 y3A(3)’

where A(3)(y 1, Y2, Y3) H(G)(yt, Y2, Y3, 0," ") and r3(n)=[y’/nt]A3).
Let B3)(y A(3)(yY3) 0, Y3). By inspection we may express OB(a)/Oy3 and

02B(a)/Oy solely in terms of OB(3)/Oy We therefore have a system of two simultaneous
linear equations for the unknown OB(3)/Oyl. Eliminating OB3)/Oyl between these
equations and setting y 0, we obtain a second order linear ordinary differential
equation in y3 for B(3)(0, y3), with polynomial coefficients, so {ra(n)ln->0} is P-
recursive. To simplify this equation we note that r3(2n + 1) 0 for n ->_ 0 since the sum
of the degrees in a graph is even. Thus B3)(0, y3) is a power series R3(x) in y32 x. Now

0B (3) dR3 02B (3) OR3 02R3
2x and 2+4xY3

0y3 -X ’t9’y3 OX OX2
Thus R3(x)=>_or3(2n)x"/(2n)! satisfies the differential equation given in Table
4.1(i). This agrees with Read [4]. A similar argument applied to system (3.2) gives
the ordinary differential equation for Q3(x)=Y.,oq3(2n)x/(2n)!, where q3(2n) is
the number of labelled 3-regular graphs on 2n vertices. This is given in Table 4.1(ii).

TABLE 4.1 (i)
The differential equation for the number of 3-regular

simple labelled graphs.

0 x(-x2-2x +2)2

1 -6(x + 6x’ + 6x 32x + 8)
2 36x2(-x2- 2x + 2)

x" d2Ra(x) dRa(x)
Ra(x)= E ra(2n) "d2(x) +St(x) do(x)Ra(x) 0dX ax +

TABLE 4.1(ii)
The differential equation [or the number of 3-regular

labelled graphs.

d(x)

0 x 10x4 + 24x _4x2_44x -48
1 -6(x5-6x4+6x3+24x2+16x-8)
2 36x2(x2-2x -2)

x" d2Oa dO3
03(x) Y’. qa(2n) "2(x) (x)+l(X) (x)+o(x)Oa(x)=O
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THE HAMMOND SERIES AND P-RECURSIVENESS 185

The case p 4 may be treated in a. similar way. Applying the H-series theorem
to system (3.1) for G(s) and putting y5 Y6 0, we have

(4.2)

OA (4) OA (4) OA (4) OA (4)

0y
yA(4) + Y2

0y 0y2 0y3

0A(4) 02A (4) OA (4)

2 -(1 + yz)A4) y3
0yOyz Oy

OA4) OZA4) 03A(4) OA
3 3+ y3A(4)

Oy3 Oy Oyz Oy 3t + y40y
OA (4) 02A (4) 02A (4) 03A (4) 04A (4)

4 -4 2 +4 =(1-y4)A(4),
ay4 ay ay3 ay ay] ay2 ay

where A(4)(yx, y2, y3, y4)= H(O)(yx, y2, Y3, Y4, 0,’" ") and r4(n)=[yT/n!]A (4).
Let (4) (4)B (yl, y4)=A (yl, 0,0, Y4). By inspection, we may express

linearly in terms of B (4), OB(4)/0yl, 82B(4)/y alone for m _-> 1. In fact, when we carry
this out for m 1, 2 (using the symbolic algebra system VAXIMA, as described in
8) and set y =0, we find that the coefficient of OB(4)/Byx at y =0 is 0 in both

equations. Eliminating O2B(4)/0y2 at y =0 between these two equations, we obtain
a second order differential equation for R4(x)=,,_or4(n)(x"/n!), where R4(x)=
B(4)(0, x). This differential equation is given in Table 4.20) and demonstrates that
R4(x) is D-finite so {r4(n)ln -> 0} is P-recursive. The corresponding differential equation
for 04(x) -o q4(n )(x"/n !), where q4(n is the number of 4-regular labelled graphs,
is deduced in a similar way from system (3.2) and is given in Table 4.2(ii).

We have therefore established the following result.
COROLLARY. {rp (n)ln --> 0} and {qp (n)ln --> 0} are P-recursive for p 2, 3, 4.

TABLE 4.2(i)
The differential equation ]’or the number of 4-regular simple labelled graphs.

i(X)

0 --X4(X + 2X4 + 2X 2 + 8X --4)2

1 -4(x13+4xX2-16xX-loxg-36xS-220xT-348x6-48xS+200x4-336x3-240x2+416x-96)
2 16x2(x-1)2(xS+2x4+2x2+8x-4)(x +2)

x" d2R4(x)
R4(x) n>-oE r4(n) ." b2(x)

dx2 +l(X)
dR4(x)

+to(x)R4(x)=O
dx

TABLE 4.2(ii)
The differential equation ]’or the number of 4-regular labelled graphs.

,i(x)

0 xX4-4xa3-8xX2+44xX-8xX-40xg-244xS+288x7 + 192x6 + 1056x5-944x4-2688x
+448x + 1408x + 384

1 -4(xXa-4xX2+8x+22xg-20xS-92xT-36x6+48xS+760x4-464xa-400x2+ 160x +96)
2 16x?(x + 1)2(x-2)2(x5-2x4-2x2+8x +4)

X dZQ4
+ dO4

O4(x)= E q,(n)’,2(xl--x2 (xl-x+O(X)O=OnO
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186 I. P. GOULDEN, D. M. JACKSON AND J. W. REILLY

Using the recurrence equations implied by the above differential equations for
g3, R4, 03, 04, we have calculated ro(n) and qo(n) for p 3, 4 and n _-<20. These
numbers are displayed in Tables A and B of the Appendix.

Read [4] has already given the differential equation associated with {ra(n)ln --> 0}.
Read and Wormald [5] have given a system of simultaneous recurrence equations for
{r4(n)ln => 0} and an inspection of these indicates that the P-recursiveness of {r4(n)ln -->
0} may be deduced quite easily. The differential equations for {qp(n)ln --> 0} for p 3
and p =4 appear to be new. We draw the reader’s attention to the fact that the
H-series theorem enables us to write down the system of partial differential equations
for the H-series for arbitrary p without difficulty. However, the reduction of this
system to a single ordinary differential equation in yp is a technical task which we are
unable to carry out for the general case.

5. A combinatorial construction. The differential equations for the H-series
associated with p-regular simple labelled graphs may be given a direct combinatorial
interpretation. This is achieved by distinguishing precisely k monovalent vertices for
k 1,..., p. This clearly involves a difficult case analysis, which is long even for the
case p 3. It is noteworthy that in this instance the H-series theorem carries out this
case analysis automatically. In this section we give a combinatorial interpretation of
system (4.1) for simple labelled 3-regular graphs.

Let be the set of simple labelled graphs whose vertices have degree at most
3 Then the power series A<3)(y y2, y3) of 4 is the exponential generating function
for the elements of ’ with y marking vertices of degree for 1, 2, 3. Thus if
a (i, i2, i3) is the number of graphs in with i vertices of degree/" 1, 2, 3, then we
have

At3(y Y2, Y3) . a(i, i2, i3)
y? Y2 Y:

il,i2,i3>--0 i! i2! i3!

The combinatorial derivations of (4. l a, b, c) are now given. To obtain these we count
the graphs in once for each set of distinct monovalent vertices for 1, 2, 3. For
this purpose the/-set is regarded as being distinguished.

Equation (4.1a). Distinguish exactly one monovalent vertex in each element in. The generating function for this is y OA(3)/Oy 1. We now derive this in another way.
1) The distinguished monovalent vertex is adjacent to a vertex of degree one,

forming a component consisting of a single edge joining two vertices. The generating
function for this is y2A

2) The distinguished monovalent vertex is adjacent to a vertex of degree two.
We may construct such graphs by distinguishing a monovalent vertex, v, and then
connecting this by an edge to a new monovalent vertex u. Now u is the distinguished
monovalent vertex adjacent to a bivalent vertex v. The generating function for this
is ylY20A(3)/Oy We note that the operator y20/Oyl arises because a monovalent
vertex is first distinguished and then connected to another vertex, making the former
bivalent.

3) The distinguished monovalent vertex is adjacent to a vertex of degree three.
Following 2), the generating function for this is yly30Aa)/Oy2.

It follows that

OA (a) OA (3) OA (3)

and we have derived (4. l a) combinatorially.
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THE HAMMOND SERIES AND P-RECURSIVENESS 187

Equation (4.1b). Distinguish two distinct monovalent vertices in each element in
M. The generating function for this is (y/2!) 02A(3)/Oy. We now derive this in another
way.

1) The two distinguished vertices are connected by a path of edge-length 1,
forming a component consisting of one edge. The generating function for this is
(y/2!)A(3).

2) The two distinguished vertices are connected by a path of edge-length 2. There
are two subcases.

i) The path contains exactly one bivalent vertex. The generating function for
this is (y2/2!)y2A3, since (y/2!)y2 is the generating function for a component
consisting of a path of edge-length two.

ii) The path contains exactly one trivalent vertex. Such graphs may be obtained
by joining a distinguished monovalent vertex in an element of M to two new
monovalent vertices, which are themselves the distinguished monovalent vertices in
the resulting graph. The generating function for this is (yZt/2!)y3 OA/Oyl.

The generating function for these two cases is therefore

I 1 OA (3)

2- Yy2A’3’+.t YYa 0yl

3) We may obtain the remaining such graphs by deleting from a graph in M a
vertex, u, of degree 2 connected to distinct vertices a and b and connecting a
distinguished isolated vertex a’ to a and a distinguished isolated vertex b’ to b. The
vertices a’ and b’ are the distinguished monovalent vertices and are not connected
by a path of edge-length 1 or 2. The generating function for this is

since a’, b’ may be labelled in two ways.
It follows that

02A (3) OA() OA (3)

0y 2
0y2

+A(3) +y2A(3) +y3
0yt

and we have derived Equation (4.1b) combinatorially.
Equation (4.1c). Distinguish three distinct monovalent vertices in each element

in M. The generating function for this is (y/3!)O3A(3/Oy. We now derive this in
another way.

1) Exactly two of the distinguished vertices are joined by a path of edge-length
one. We may construct such graphs by joining two isolated vertices, u and v, by an
edge and by distinguishing one monovalent vertex w in a graph in M. The generating
function for this is (y/2!)y OA()/Oy.

2) At least one pair of distinguished vertices are joined by a path of edge-length
two. There are three subcases.

i) All three distinguished vertices are joined by paths of edge-length exactly
two. Thus the distinguished vertices are the monovalent vertices of a component
whose remaining vertex has degree three. The generating function for this is therefore
(y/3!)y3A (), since the component may be adjoined to any element in M.

ii) Exactly two of the distinguished vertices are joined by a path of edge-length
equal to two. There are two subcases.
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188 I. P. GOULDEN, D. M. JACKSON AND J. W. REILLY

a) The path contains a bivalent vertex. Such graphs may be constructed from a
path of edge-length two joining two distinguished vertices and a graph in ,d with
exactly one distinguished monovalent vertex. The generating function for this is
y2(y/2!)yl 3A(3)/Oy 1.

b) The path contains a vertex of degree three. We may construct such graphs by
considering a path uvw, of edge-length two, and a graph in M with exactly two distinct
distinguished monovalent vertices a and b, separated by more than one edge. The
vertices v and a are now identified, and u, w and b are the distinct distinguished
vertices of the resulting graph. The generating function due to all graphs in M treated
in this way is (y/2l)yly302A(3)/Oy. But this set includes graphs in which two
distinguished monovalent vertices are separated by a single edge, and hence form a

(3)component, enumerated by y21, adjoined to an element of M, enumerated by A(3).When this is treated in the above manner, the generating function is (y2/2!)y3ylA
so the contribution of this case is

1 "02A(3) (3))2-- yy3 ( y A

3) No pairs of the distinguished monovalent vertices are joined by paths of
edge-length at least one or two. We may construct such graphs by deleting from a
graph in M a vertex of degree three connected to vertices a, b and c and connecting
a to a’, b to b’ and c to c’, where a’, b’, c’ are isolated vertices. In the resulting graph,
a’, b’, c’ are the distinguished vertices. The generating function for this is y 3A(3)/3y3
since a’, b’, c’ may be labelled in 3! ways.

It follows that

OaA ca) OA (3) 02A (3) OA
+ 3y3 2y3A (3)

y3 =3(1+y2) y y +6
0y3

from (4. lb). Thus

0A(3)]3(1 + y2)A (3) + 3y3 ’0yl J
-2y3A(3)+6 0A

(3)

0 OA(3) 02A(3)] OA(3)
-3 1. 2 y j 2y3A (3) + 6

OY2 Oy3

03A (3) OA (3) 02A (3)

Oy + 3 y3A(3)+3
Oy3 Oy Oy2

and we have combinatorially derived (4.1c). This completes the combinatorial treat-
ment of system (4.1).

6. Bisymmetric H-series. In the final part of this paper we consider the extension
of the H-series theorem to the bisymmetric case. As an application of this extension
we enumerate n x n matrices over the nonnegative integers with line sum p (each row
sum and column sum equals p) for p 2, 3.

Let r (rl, r2, and c (c 1, c2, be sets of indeterminates, and let

T(r, c)= E c(i, j)Al(r)A(c),
i,|>0

where A is the monomial symmetric function defined in 2. Then the H-series of T
is

(H(T))(x, y)= c(i, j)(z(i)! -(j)!)-lx+(i)y+(|).
i,l_-->0
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THE HAMMOND SERIES AND P-RECURSIVENESS 189

Let T be the ordinary generating function for nonnegative integer matrices, with
r and ci marking the sums of the elements in row and column respectively. Now
a k in row and column contributes k to the ith row sum and the/th column sum
so the generating function for the (i, /’)-element is 1 +(ricj)+(ricj)2+ whence

T(r, c)= I’I (1- riQ)-1.
i,jl

Clearly T is bisymmetric since it is symmetric in r and in e. Let ,k rk "- r2k +"" and
tk C k + C +" "for k -> 1, the power sum symmetric functions for r and e, respectively.
Now

1
T(r,e)=exp E log(1-&cj)-l=exp Y’. - E k k

ric,
i,]l k >l i,]>l

SO

1
G(s, t)= exp ->E -st.

The system of differential equations satisfied by G(s, t) is

oG 1 oG 1
(5.1)

Os k tG fork_->l,
Ot k sG

fork_->l.

We illustrate the use of the H-series theorem in the bisymmetric case by applying
it to nonnegative integer matrices with line sum two in this section and line sum three
in 7. Let l(n) be the number of n x n nonnegative integer matrices with line sum
p. Then

/2(n) [x.  lo’:’ X"nlJ x2, Yl, Y2),

where D(2)(x 1, x2, yl, y2) (H(T))(xl, x2, 0,. yl, y2, 0,...). Applying the H-
series theorem to system (6.1) and setting Xa x4 0 and Y3 3:4 0 we
have the following system of equations for D(-)(xl, x2, yl, y2).

(6.2)

ODc’.) OD (:) OD (2) OD (2)

a) -----=ylD(2)+y2 a)’ -----=x1D(2)+x2
Oxl Oyl Oyl Oxl

b)
0D(2) 1 020 (2) 1 00 (2) 1 02D (2) 1 x2D(2)"
Ox2 20x =y2D(2)’ b)’

0y2 2 0y2 =
From (6.2a) and (6.2a)’ we obtain

(6.3)
0D(2)

(Yl + y2xl)(1 x2Y2)-ID (2).
c3x

Differentiating (6.2b)’ partially with respect to x2 we have

2
02D (2) 03D (2) OD (2)

+D(2)
2 +X2

0X20y2 0y 0X2 0X2

Eliminating OD(2)/Ox2 from the right-hand side of this equation by means of (6.2b)
we have

O2D (2) 04D (2) 02D (2) 02D (2)

(6.4) 4 +x2 +x2Y2D(2)+2D (2).
Ox2 Oy2 0x Oy2 + y2 0y oX
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190 I. P. GOULDEN, D. M. JACKSON AND J. W. REILLY

We wish to eliminate xl and yl. Thus let E(2)(x (2)(0,2, Y2)=D x2, 0, Y2) so that,
from (6.3),

02D (2)

Xl=Yl=0
y2(1 -x2Y2)-lE(2

From (6.2a)’ we have

and

04D (2)

2(1 + X2Y2)(1- X2Y2)-2E(2)

02D (2)

Xl=Yl=0
--X2(1 x-l,. (2)

X2Y2) /3

Substituting these expressions into (6.4) and simplifying we obtain

(4-8x2Y2 +4xy)
02E(2)

OX2 Oy2
(4 2xy +xy )E2).

But a matrix with line sum 2 must be square, so Et2)(x2, y2) Mt2)(x2y2), where
M(2(z) Y.,__>o/2(n) z"/(n !)2.

Thus M(2(z) satisfies the differential equation

4z(1 z)2
d2 )2 d M(2)(z)_(4 2z 2 3)M(2)M(2)(z)+4(1-z -z +z (z) 0,

SO M(2)(z) is D-finite and {/2(n)[n 0} is P-recursive. By inspection this equation may
be rewritten as

2z(1-z)-dfz+2+2z-z G(z) 0, where G(z) {2(1 d }M(2)(Zz) zz-(2-z) ).

But G(z) is a formal power series with no negative exponents so G(z)- 0, yielding
the recurrence equation

12(n + 1)= (n + 1)212(n)-1/2n2(n + 1)/2(n 1)

for n _>-" 0, where lz(0)= 1,/z(-1) 0. This simplifies the recurrence equation given by
Anand, Dumir and Gupta [1]. The differential equation may be solved to give

G(z (1- z )-l/2 exp (),
which may be obtained immediately by a combinatorial construction involving cycles.

7. Nonnegative integer matrices with line sum 3. Now

X3 D(3)(Xl, x2, x3, Yl, Y2, Y3),13(n .. n !_l

where D(3)(x 1, X2, X3, Yl, Yz, Y3)= (H(T))(xl xz, x3, 0,’’" Yl Yz, Y3, 0,’’" ), and T is
given in 6. Following 6 we apply the H-series theorem and set x4 x5 0
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THE HAMMOND SERIES AND P-RECURSIVENESS 191

and y4 y5 0 to obtain the following system of equations for D

ylD(a)+y2 +y3

OD() OD
-’X3a)’ 3yl-x1D(3)+x2 cx1

00 (3) 1 02D (3) 1 (3) 1 0D (3)

(7.1)

b)’
OD(3) 1 02D

OD(3) 02D(3) 1 03D(3) 1
+ y3D (3)c)

Ox3 OX OX2 3 Ox 3

C)’
OD (3) 02D (3 1 030 (3) 1

l- x3D (3)

0Y3 0yl0y2 3 0y3 3

By inspection we may express 3 0y2 at x2 0, y2 0 linearly in terms
of O (3), OD(3)/c3x OD(3)/c3y 02D(3)/c3x1, 1, 10yl at xz yz 0 for > 1. Moreover, when
we carry this out for 1, 2 (again using VAXIMA) and set x y 0, we discover
that the coefficients of OD(3)/Oxl and OD(3)/Oyl are 0 in both equations. Eliminating
02D(3)/Oxl 0yl at xl =x2=yl =y2=0 between these two equations, we get a linear
equation involving 04D(3)/Ox Oy, 02D(3)/Ox3 0y3 and D (3), all at xl x2 Yl y2 0.
But D(3)(0, 0, x3, 0, 0, Y3) E(3)(x3Y3), where

zE(3)(z) ._--oE 13(n) (n!)----"
Finally, this partial differential equation for E(3)(x3Y3) can be transformed to a
fourth-order ordinary differential equation for E(3)(x), with polynomial coefficients
in x, by making the substitution x x3y3. This differential equation is displayed in
Table 7.1.

We therefore have the following result.
COROLLARY.

{13(n)ln -> 0} is P-recursive.

TABLE 7.1
The differential equation for the number of nonnegative integer matrices with line sum 3.

0 x11-7xl+30xg-16xS-43x7+51x6+238xS+630x4+36x3-1944x2-1152x+576
-9(x 1-4x9 +22xS-8xT-4x6+8x5+88x4+252x3+ 120x2- 320x +64)

2 -9(xl-4x9 +22xS-8xT-22x6+8x5+ 106x4+234x3+48xZ-320x +64)x
3 324x’(x4-x + x +4)
4 81x5(x4-x2 + x +4)

x d4E(3)
E3)(x) E 13(n) b4(x) + b3(x)

.>-0 (.)2 dx4

dE(3)

+ bl(x) -x+o(x)E(3)= 0

d3E3) d2Et3)

dx
+t2(x) dx-’-’----D
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192 I. P. GOULDEN, D. M. JACKSON AND J. W. REILLY

This appears to be a new result (see Stanley [6, p. 186]). The recurrence for {/3(n)ln > 0}
which follows from the equation in Table 7.1 has been used to compute /3(n) for
n _-< 15. These numbers are given in Table C of the Appendix.

8. Concluding comments. Each of the differential equations displayed in tables
in this paper was obtained by using the symbolic algebra system called VAXIMA.
The elimination procedures for R4, 4 and E3) were so substantial that we could not
have carried them out by hand. Each of the tables given in the Appendix was computed
from the corresponding differential equation by means of VAXIMA. The computer
calculations were carried out at the University of Waterloo. VAXIMA is based on
the MACSYMA system developed at the Massachusetts Institute of Technology.

Appendix.
TABLE A

Numbers of 3-regular simple labelled graphs (i) and labelled graphs (ii).

r3(rl) q3(tl)

0 1
2 0 2
4 1 47
6 70 4720
8 19355 1256395
10 11180820 699971370
12 11555272575 706862729265
14 19506631814670 1173744972139740
16 50262958713792825 2987338986043236825
18 187747837889699887800 11052457379522093985450
20 976273961160363172131825 5703510582280129537568575

(i) (ii)

TABLE B
Numbers of 4-regular simple labelled graphs (i) and labelled graphs (ii).

r4(n) q4(n)

0 1 1
1 0 1
2 0 3
3 0 15
4 0 138
5 1 2021
6 15 43581
7 465 1295493
8 19355 50752145
9 1024380 2533755933
10 66462606 157055247261
11 5188453830 11836611005031
12 480413921130 1066129321651668
13 52113376310985 113117849882149725
14 6551246596501035 13965580274228976213
15 945313907253606891 1985189312618723797371
16 155243722248524067795 321932406123733248625851
17 28797220460586826422720 59079829666712346141491403
18 5993002310427150494060340 12182062872168618012045410805
19 1390759561507559001823665540 2804416350168401031334025488653
20 357920518512934324278467820756 716675823235860386364568072658826

(i) (ii)
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THE HAMMOND SERIES AND P-RECURSIVENESS 193

TABLE C
Numbers of n x n nonnegative integer matrices with line sum 3.

n /3(n)

0 1
1 1
2 4
3 55
4 2008
5 153040
6 20933840
7 4662857360
8 1579060246400
9 772200774683520
10 523853880779443200
11 477360556805016931200
12 569060910292172349004800
13 868071731152923490921728000
14 1663043727673392444887284377600
15 3937477620391471128913917360384000
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