[go: up one dir, main page]

login
A244868
Number of symmetric 5 X 5 matrices of nonnegative integers with zeros on the main diagonal and every row and column adding to n.
2
1, 22, 158, 654, 1980, 4906, 10577, 20588, 37059, 62710, 100936, 155882, 232518, 336714, 475315, 656216, 888437, 1182198, 1548994, 2001670, 2554496, 3223242, 4025253, 4979524, 6106775, 7429526, 8972172, 10761058, 12824554, 15193130, 17899431, 20978352, 24467113, 28405334, 32835110, 37801086
OFFSET
0,2
LINKS
R. P. Stanley, Examples of Magic Labelings, Unpublished Notes, 1973 [Cached copy, with permission]
FORMULA
G.f.: (1 + 16*x + 41*x^2 + 16*x^3 + x^4) / (1 - x)^6.
From Colin Barker, Jan 11 2017: (Start)
a(n) = (24 + 94*n + 165*n^2 + 155*n^3 + 75*n^4 + 15*n^5) / 24.
a(n) = 6*a(n-1) - 15*a(n-2) + 20*a(n-3) - 15*a(n-4) + 6*a(n-5) - a(n-6) for n>5.
(End)
PROG
(PARI) Vec((1 + 16*x + 41*x^2 + 16*x^3 + x^4) / (1 - x)^6 + O(x^40)) \\ Colin Barker, Jan 11 2017
CROSSREFS
Even bisection of row n=5 of A333351.
Cf. A053494.
Sequence in context: A041934 A027943 A224257 * A223913 A189416 A224185
KEYWORD
nonn,easy
AUTHOR
N. J. A. Sloane, Jul 07 2014
STATUS
approved