[go: up one dir, main page]

login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
Search: a011757 -id:a011757
Displaying 1-10 of 35 results found. page 1 2 3 4
     Sort: relevance | references | number | modified | created      Format: long | short | data
A063076 Differences of A011757 ("Primes with square indices"). +20
3
5, 16, 30, 44, 54, 76, 84, 108, 122, 120, 166, 182, 184, 234, 192, 260, 264, 294, 304, 342, 378, 342, 408, 426, 414, 468, 488, 474, 516, 576, 588, 576, 604, 590, 696, 694, 728, 694, 756, 828, 774, 776, 870, 862, 852, 1010, 922, 998, 916, 1020, 1032, 1110 (list; graph; refs; listen; history; text; internal format)
OFFSET
1,1
COMMENTS
Does a(n) = k^2 have infinitely many solutions? E.g., 16 = 4^2; 576 = 24^2; ...
LINKS
MATHEMATICA
Differences[Prime[Range[60]^2]] (* Harvey P. Dale, May 01 2023 *)
PROG
(PARI) j=[]; for(n=1, 150, j=concat(j, prime((n+1)^2)-prime(n^2))); j
(PARI) { default(primelimit, 2*10^7); for (n=1, 1000, write("b063076.txt", n, " ", prime((n+1)^2) - prime(n^2)) ) } \\ Harry J. Smith, Aug 17 2009
CROSSREFS
KEYWORD
nonn
AUTHOR
Santi Spadaro, Aug 04 2001
EXTENSIONS
More terms from Jason Earls, Aug 05 2001
STATUS
approved
A001156 Number of partitions of n into squares.
(Formerly M0221 N0079)
+10
110
1, 1, 1, 1, 2, 2, 2, 2, 3, 4, 4, 4, 5, 6, 6, 6, 8, 9, 10, 10, 12, 13, 14, 14, 16, 19, 20, 21, 23, 26, 27, 28, 31, 34, 37, 38, 43, 46, 49, 50, 55, 60, 63, 66, 71, 78, 81, 84, 90, 98, 104, 107, 116, 124, 132, 135, 144, 154, 163, 169, 178, 192, 201, 209, 220, 235, 247, 256 (list; graph; refs; listen; history; text; internal format)
OFFSET
0,5
COMMENTS
Number of partitions of n such that number of parts equal to k is multiple of k for all k. - Vladeta Jovovic, Aug 01 2004
Of course p_{4*square}(n)>0. In fact p_{4*square}(32n+28)=3 times p_{4*square}(8n+7) and p_{4*square}(72n+69) is even. These seem to be the only arithmetic properties the function p_{4*square(n)} possesses. Similar results hold for partitions into positive squares, distinct squares and distinct positive squares. - Michael David Hirschhorn, May 05 2005
The Heinz numbers of these partitions are given by A324588. - Gus Wiseman, Mar 09 2019
REFERENCES
N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
LINKS
Alois P. Heinz, Table of n, a(n) for n = 0..10000 (first 1001 terms from T. D. Noe)
J. Bohman et al., Partitions in squares, Nordisk Tidskr. Informationsbehandling (BIT) 19 (1979), 297-301.
J. Bohman et al., Partitions in squares, Nordisk Tidskr. Informationsbehandling (BIT) 19 (1979), 297-301. (Annotated scanned copy)
G. H. Hardy and S. Ramanujan, Asymptotic formulae in combinatory analysis, Proceedings of the London Mathematical Society, 2, XVI, 1917, p. 373.
M. D. Hirschhorn and J. A. Sellers, On a problem of Lehmer on partitions into squares, The Ramanujan Journal 8 (2004), 279-287.
F. Iacobescu, Smarandache Partition Type and Other Sequences, Bull. Pure Appl. Sci. 16E, 237-240, 1997.
Igor Pak, Complexity problems in enumerative combinatorics, arXiv:1803.06636 [math.CO], 2018.
James A. Sellers, Partitions Excluding Specific Polygonal Numbers As Parts, Journal of Integer Sequences, Vol. 7 (2004), Article 04.2.4.
F. Smarandache, Sequences of Numbers Involved in Unsolved Problems, Hexis, Phoenix, 2006.
Florentin Smarandache, Sequences of Numbers Involved in Unsolved Problems, arXiv:math/0604019 [math.GM], 2006.
Eric Weisstein's World of Mathematics, Partition
Eric Weisstein's World of Mathematics, Smarandache Sequences
Eric Weisstein's World of Mathematics, Square Number
FORMULA
G.f.: Product_{m>=1} 1/(1-x^(m^2)).
G.f.: Sum_{n>=0} x^(n^2) / Product_{k=1..n} (1 - x^(k^2)). - Paul D. Hanna, Mar 09 2012
a(n) = (1/n)*Sum_{k=1..n} A035316(k)*a(n-k). - Vladeta Jovovic, Nov 20 2002
a(n) = f(n,1,3) with f(x,y,z) = if x<y then 0^x else f(x-y,y,z)+f(x,y+z,z+2). - Reinhard Zumkeller, Nov 08 2009
Conjecture (Jan Bohman, Carl-Erik Fröberg, Hans Riesel, 1979): a(n) ~ c * n^(-alfa) * exp(beta*n^(1/3)), where c = 1/18.79656, beta = 3.30716, alfa = 1.16022. - Vaclav Kotesovec, Aug 19 2015
From Vaclav Kotesovec, Dec 29 2016: (Start)
Correct values of these constants are:
1/c = sqrt(3) * (4*Pi)^(7/6) / Zeta(3/2)^(2/3) = 17.49638865935104978665...
alfa = 7/6 = 1.16666666666666666...
beta = 3/2 * (Pi/2)^(1/3) * Zeta(3/2)^(2/3) = 3.307411783596651987...
a(n) ~ 3^(-1/2) * (4*Pi*n)^(-7/6) * Zeta(3/2)^(2/3) * exp(2^(-4/3) * 3 * Pi^(1/3) * Zeta(3/2)^(2/3) * n^(1/3)). [Hardy & Ramanujan, 1917]
(End)
EXAMPLE
p_{4*square}(23)=1 because 23 = 3^2 + 3^2 + 2^2 + 1^2 and there is no other partition of 23 into squares.
G.f.: A(x) = 1 + x + x^2 + x^3 + 2*x^4 + 2*x^5 + 2*x^6 + 2*x^7 +...
such that the g.f. A(x) satisfies the identity [Paul D. Hanna]:
A(x) = 1/((1-x)*(1-x^4)*(1-x^9)*(1-x^16)*(1-x^25)*...)
A(x) = 1 + x/(1-x) + x^4/((1-x)*(1-x^4)) + x^9/((1-x)*(1-x^4)*(1-x^9)) + x^16/((1-x)*(1-x^4)*(1-x^9)*(1-x^16)) + ...
From Gus Wiseman, Mar 09 2019: (Start)
The a(14) = 6 integer partitions into squares are:
(941)
(911111)
(44411)
(44111111)
(41111111111)
(11111111111111)
while the a(14) = 6 integer partitions in which the multiplicity of k is a multiple of k for all k are:
(333221)
(33311111)
(22222211)
(2222111111)
(221111111111)
(11111111111111)
(End)
MAPLE
b:= proc(n, i) option remember; `if`(n=0, 1, `if`(i<1, 0,
b(n, i-1)+ `if`(i^2>n, 0, b(n-i^2, i))))
end:
a:= n-> b(n, isqrt(n)):
seq(a(n), n=0..120); # Alois P. Heinz, May 30 2014
MATHEMATICA
CoefficientList[ Series[Product[1/(1 - x^(m^2)), {m, 70}], {x, 0, 68}], x] (* Or *)
Join[{1}, Table[Length@PowersRepresentations[n, n, 2], {n, 68}]] (* Robert G. Wilson v, Apr 12 2005, revised Sep 27 2011 *)
f[n_] := Length@ IntegerPartitions[n, All, Range@ Sqrt@ n^2]; Array[f, 67] (* Robert G. Wilson v, Apr 14 2013 *)
b[n_, i_] := b[n, i] = If[n==0, 1, If[i<1, 0, b[n, i-1] + If[i^2>n, 0, b[n-i^2, i]]]]; a[n_] := b[n, Sqrt[n]//Floor]; Table[a[n], {n, 0, 120}] (* Jean-François Alcover, Nov 02 2015, after Alois P. Heinz *)
PROG
(Haskell)
a001156 = p (tail a000290_list) where
p _ 0 = 1
p ks'@(k:ks) m = if m < k then 0 else p ks' (m - k) + p ks m
-- Reinhard Zumkeller, Oct 31 2012, Aug 14 2011
(PARI) {a(n)=polcoeff(1/prod(k=1, sqrtint(n+1), 1-x^(k^2)+x*O(x^n)), n)} \\ Paul D. Hanna, Mar 09 2012
(PARI) {a(n)=polcoeff(1+sum(m=1, sqrtint(n+1), x^(m^2)/prod(k=1, m, 1-x^(k^2)+x*O(x^n))), n)} \\ Paul D. Hanna, Mar 09 2012
(Magma) m:=70; R<x>:=PowerSeriesRing(Integers(), m); Coefficients(R!( (&*[1/(1-x^(k^2)): k in [1..(m+2)]]) )); // G. C. Greubel, Nov 11 2018
CROSSREFS
Cf. A078134 (first differences).
Row sums of A243148.
Euler trans. of A010052 (see also A308297).
KEYWORD
nonn,easy
AUTHOR
EXTENSIONS
More terms from Eric W. Weisstein
More terms from Gh. Niculescu (ghniculescu(AT)yahoo.com), Oct 08 2006
STATUS
approved
A055875 a(0)=1, a(n) = prime(n^3). +10
20
1, 2, 19, 103, 311, 691, 1321, 2309, 3671, 5519, 7919, 10957, 14753, 19403, 24809, 31319, 38873, 47657, 57559, 69031, 81799, 96137, 112291, 130073, 149717, 171529, 195043, 220861, 248851, 279431, 312583, 347707, 386093, 427169, 470933, 517553 (list; graph; refs; listen; history; text; internal format)
OFFSET
0,2
COMMENTS
A sequence of increments for Shell sort that produces good results. A bit better than Sedgewick's A036562 and A003462.
LINKS
David A. Corneth, Table of n, a(n) for n = 0..2200 (first 1001 terms from Ivan Panchenko)
Andrew Booker, Nth Prime Page.
FORMULA
a(n) = A000040(A000578(n)), n>0.
MATHEMATICA
{1}~Join~Array[Prime[#^3] &, 35] (* Michael De Vlieger, Apr 13 2021 *)
PROG
(Magma) [NthPrime(n^3): n in [0..50] ]; // Vincenzo Librandi, Apr 22 2011
(PARI) first(n) = { my(res = vector(n), t = 0); forprime(p = 2, oo, t++; if(ispower(t, 3, &i), print1([i, p]", "); res[i] = p; if(i >= n, return(concat(1, res))))) } \\ David A. Corneth, Apr 13 2021
CROSSREFS
Sequences used for Shell sort: A003462, A033622, A036562, A036564, A036569, A055875.
KEYWORD
nonn
AUTHOR
Steven Pigeon (pigeon(AT)iro.umontreal.ca), Jul 14 2000
EXTENSIONS
More terms from Jonathan Vos Post, Aug 13 2005
STATUS
approved
A324588 Heinz numbers of integer partitions of n into perfect squares (A001156). +10
11
1, 2, 4, 7, 8, 14, 16, 23, 28, 32, 46, 49, 53, 56, 64, 92, 97, 98, 106, 112, 128, 151, 161, 184, 194, 196, 212, 224, 227, 256, 302, 311, 322, 343, 368, 371, 388, 392, 419, 424, 448, 454, 512, 529, 541, 604, 622, 644, 661, 679, 686, 736, 742, 776, 784, 827, 838 (list; graph; refs; listen; history; text; internal format)
OFFSET
1,2
COMMENTS
The Heinz number of an integer partition (y_1, ..., y_k) is prime(y_1) * ... * prime(y_k).
Also products of elements of A011757.
LINKS
EXAMPLE
The sequence of terms together with their prime indices begins:
1: {}
2: {1}
4: {1,1}
7: {4}
8: {1,1,1}
14: {1,4}
16: {1,1,1,1}
23: {9}
28: {1,1,4}
32: {1,1,1,1,1}
46: {1,9}
49: {4,4}
53: {16}
56: {1,1,1,4}
64: {1,1,1,1,1,1}
92: {1,1,9}
97: {25}
98: {1,4,4}
MATHEMATICA
Select[Range[100], And@@Cases[FactorInteger[#], {p_, _}:>IntegerQ[Sqrt[PrimePi[p]]]]&]
CROSSREFS
KEYWORD
nonn
AUTHOR
Gus Wiseman, Mar 08 2019
STATUS
approved
A123914 a(n) = prime(n)^2 - prime(n^2). Commutator of (primes, squares) at n. +10
9
2, 2, 2, -4, 24, 18, 62, 50, 110, 300, 300, 542, 672, 656, 782, 1190, 1602, 1578, 2052, 2300, 2246, 2780, 3086, 3710, 4772, 5150, 5090, 5442, 5400, 5772, 8556, 9000, 10032, 9980, 12270, 12174, 13328, 14520, 15146, 16430, 17714, 17660, 20604, 20502, 21200 (list; graph; refs; listen; history; text; internal format)
OFFSET
1,1
COMMENTS
a(4) = -4 is the only negative value. All values are even. Asymptotically a(n) ~ (n log n)^2 - (n^2) log (n^2) = (n^2)*(log n)^2 - 2*(n^2)*(log n) = (n^2)*((log n)^2 - 2*log n) = O((n^2)*(log n)^2) which is the same as the asymptotic of commutator [primes, triangular numbers] at n, or, for that matter, commutator [primes, k-tonal numbers] at n for any k > 2.
For pi(n^2) - pi(n)^2 see A291440. - Jonathan Sondow, Sep 10 2017
Proof that a(n) > 0 for n <> 4: It is known that pi(k^2) >= pi(k)^2 for k <> 7 (see A291440). Take k = prime(n) to get pi(prime(n)^2) >= pi(prime(n))^2 = n^2 for prime(n) <> 7 = prime(4). Thus for n <> 4 there are at least n^2 primes <= prime(n)^2, so prime(n^2) <= prime(n)^2, implying a(n) >= 0. But a prime cannot equal a square, so a(n) > 0 for n <> 4. - Jonathan Sondow, Nov 04 2017
REFERENCES
See A324799 for references. - N. J. A. Sloane, Sep 11 2019
LINKS
Seiichi Manyama, Table of n, a(n) for n = 1..10000 (terms 1..500 from G. C. Greubel)
FORMULA
a(n) = A001248(n) - A011757(n).
a(n) = commutator [A000040, A000290] at n.
a(n) = square(prime(n)) - prime(square(n)).
a(n) = A000290(A000040(n)) - A000040(A000290(n)). [corrected by Jonathan Sondow, Sep 10 2017]
EXAMPLE
a(1) = prime(1)^2 - prime(1^2) = prime(1)^2 - prime(1^2) = 4 - 2 = 2.
a(2) = prime(2)^2 - prime(2^2) = prime(2)^2 - prime(2^2) = 9 - 7 = 2.
a(3) = prime(3)^2 - prime(3^2) = prime(3)^2 - prime(3^2) = 25 - 23 = 2.
a(4) = prime(4)^2 - prime(4^2) = prime(4)^2 - prime(4^2) = 49 - 53 = -4.
a(5) = prime(5)^2 - prime(5^2) = prime(5)^2 - prime(5^2) = 121 - 97 = 24.
MATHEMATICA
f[n_] := Prime[n]^2 - Prime[n^2]; Array[f, 45] (* Robert G. Wilson v, Oct 29 2006 *)
Table[(Prime[n])^2 - Prime[n^2], {n, 1, 300}] (* G. C. Greubel, Sep 15 2015 *)
PROG
(Magma) [NthPrime(n)^2 - NthPrime(n^2): n in [1..60]]; // Vincenzo Librandi, Sep 16 2015
(PARI) vector(100, n, prime(n)^2 - prime(n^2)) \\ Altug Alkan, Oct 05 2015
CROSSREFS
Main diagonal of A324799.
KEYWORD
easy,sign
AUTHOR
Jonathan Vos Post, Oct 28 2006
EXTENSIONS
More terms from Robert G. Wilson v, Oct 29 2006
STATUS
approved
A324587 Heinz numbers of integer partitions of n into distinct perfect squares (A033461). +10
8
1, 2, 7, 14, 23, 46, 53, 97, 106, 151, 161, 194, 227, 302, 311, 322, 371, 419, 454, 541, 622, 661, 679, 742, 827, 838, 1009, 1057, 1082, 1193, 1219, 1322, 1358, 1427, 1589, 1619, 1654, 1879, 2018, 2114, 2143, 2177, 2231, 2386, 2437, 2438, 2741, 2854, 2933 (list; graph; refs; listen; history; text; internal format)
OFFSET
1,2
COMMENTS
The Heinz number of an integer partition (y_1, ..., y_k) is prime(y_1) * ... * prime(y_k).
Also products of distinct elements of A011757.
LINKS
EXAMPLE
The sequence of terms together with their prime indices begins:
1: {}
2: {1}
7: {4}
14: {1,4}
23: {9}
46: {1,9}
53: {16}
97: {25}
106: {1,16}
151: {36}
161: {4,9}
194: {1,25}
227: {49}
302: {1,36}
311: {64}
322: {1,4,9}
371: {4,16}
419: {81}
454: {1,49}
541: {100}
MATHEMATICA
Select[Range[1000], And@@Cases[FactorInteger[#], {p_, k_}:>k==1&&IntegerQ[Sqrt[PrimePi[p]]]]&]
CROSSREFS
KEYWORD
nonn
AUTHOR
Gus Wiseman, Mar 08 2019
STATUS
approved
A351982 Number of integer partitions of n into prime parts with prime multiplicities. +10
8
1, 0, 0, 0, 1, 0, 2, 0, 0, 1, 3, 0, 1, 1, 3, 3, 3, 0, 1, 4, 5, 5, 3, 3, 5, 8, 5, 5, 6, 8, 8, 11, 7, 8, 10, 17, 14, 14, 12, 17, 17, 21, 18, 23, 20, 28, 27, 31, 27, 36, 32, 35, 37, 46, 41, 52, 45, 60, 58, 63, 59, 78, 71, 76, 81, 87, 80, 103, 107, 113, 114, 127 (list; graph; refs; listen; history; text; internal format)
OFFSET
0,7
LINKS
EXAMPLE
The partitions for n = 4, 6, 10, 19, 20, 25:
(22) (33) (55) (55333) (7733) (55555)
(222) (3322) (55522) (77222) (77722)
(22222) (3333322) (553322) (5533333)
(33322222) (5522222) (5553322)
(332222222) (55333222)
(55522222)
(333333322)
(3333322222)
MATHEMATICA
Table[Length[Select[IntegerPartitions[n], And@@PrimeQ/@#&&And@@PrimeQ/@Length/@Split[#]&]], {n, 0, 30}]
CROSSREFS
The version for just prime parts is A000607, ranked by A076610.
The version for just prime multiplicities is A055923, ranked by A056166.
For odd instead of prime we have A117958, ranked by A352142.
The constant case is A230595, ranked by A352519.
Allowing any multiplicity > 1 gives A339218, ranked by A352492.
These partitions are ranked by A346068.
The non-constant case is A352493, ranked by A352518.
A000040 lists the primes.
A001221 counts constant partitions of prime length, ranked by A053810.
A001694 lists powerful numbers, counted A007690, weak A052485.
A038499 counts partitions of prime length.
A101436 counts parts of prime signature that are themselves prime.
A112798 lists prime indices, reverse A296150, sum A056239.
A124010 gives prime signature, sorted A118914, sum A001222.
A257994 counts prime indices that are prime, nonprime A330944.
KEYWORD
nonn
AUTHOR
Gus Wiseman, Mar 18 2022
STATUS
approved
A109770 Prime(1^2) + prime(2^2) + ... + prime(n^2). +10
5
2, 9, 32, 85, 182, 333, 560, 871, 1290, 1831, 2492, 3319, 4328, 5521, 6948, 8567, 10446, 12589, 15026, 17767, 20850, 24311, 28114, 32325, 36962, 42013, 47532, 53539, 60020, 67017, 74590, 82751, 91488, 100829, 110760, 121387, 132708, 144757 (list; graph; refs; listen; history; text; internal format)
OFFSET
1,1
LINKS
FORMULA
Cumulative sum of A011757.
EXAMPLE
a(1) = 2 = prime(1^2).
a(2) = 9 = 2 + 7 = prime(1^2) + prime(2^2).
a(3) = 32 = 2 + 7 + 23 = prime(1^2) + prime(2^2) + prime(3^2).
a(4) = 32 = 2 + 7 + 23 + 53 = prime(1^2) + prime(2^2) + prime(3^2) prime(4^2).
a(x) = 2+7+23+53+97+151+227+311+419+541+661+827+1009+1193+1427+1619+1879+2143+2437+2741+3083+3461+3803+4211+4637+5051+5519+6007+6481+6997+7573+8161+8737+9341+9931+10627+11321+12049+12743+13499+14327 = 185326.
MATHEMATICA
Accumulate[Prime[Range[40]^2]] (* Harvey P. Dale, May 31 2014 *)
CROSSREFS
KEYWORD
nonn
AUTHOR
Jonathan Vos Post, Aug 13 2005
STATUS
approved
A109791 a(n) = prime(n^4). +10
4
2, 53, 419, 1619, 4637, 10627, 21391, 38873, 65687, 104729, 159521, 233879, 331943, 459341, 620201, 821641, 1069603, 1370099, 1731659, 2160553, 2667983, 3260137, 3948809, 4742977, 5653807, 6691987, 7867547, 9195889, 10688173, 12358069 (list; graph; refs; listen; history; text; internal format)
OFFSET
1,1
COMMENTS
Since the prime number theorem is the statement that prime[n] ~ n * log n as n -> infinity [Hardy and Wright, page 10] we have a(n) = prime(n^4) is asymptotically (n^4)*log(n^4) = 4*(n^4)*log(n).
REFERENCES
G. H. Hardy and E. M. Wright, An Introduction to the Theory of Numbers. 3rd ed., Oxford Univ. Press, 1954, p. 2.
LINKS
FORMULA
a(n) = A000040(A000583(n)) for n > 0.
EXAMPLE
a(1) = prime(1^4) = 2,
a(2) = prime(2^4) = 53,
a(3) = prime(3^4) = 419, etc.
MATHEMATICA
Prime[Range[30]^4] (* Harvey P. Dale, Jun 07 2017 *)
PROG
(Magma) [NthPrime(n^4): n in [1..50] ]; // Vincenzo Librandi, Apr 22 2011
(PARI) a(n)=prime(n^4) \\ Charles R Greathouse IV, Oct 03 2013
(Sage) [nth_prime(n^4) for n in (1..30)] # G. C. Greubel, Dec 09 2018
CROSSREFS
KEYWORD
nonn
AUTHOR
Jonathan Vos Post, Aug 14 2005
STATUS
approved
A323526 One and prime numbers whose prime index is a perfect square. +10
4
1, 2, 7, 23, 53, 97, 151, 227, 311, 419, 541, 661, 827, 1009, 1193, 1427, 1619, 1879, 2143, 2437, 2741, 3083, 3461, 3803, 4211, 4637, 5051, 5519, 6007, 6481, 6997, 7573, 8161, 8737, 9341, 9931, 10627, 11321, 12049, 12743, 13499, 14327, 15101, 15877, 16747, 17609 (list; graph; refs; listen; history; text; internal format)
OFFSET
1,2
LINKS
FORMULA
a(n) = A011757(n-1) for n > 1. - Alois P. Heinz, Jan 17 2019
MATHEMATICA
Array[Prime[#^2]&, 20]
PROG
(PARI) vector(50, n, if (n==1, 1, prime((n-1)^2))) \\ Michel Marcus, Feb 15 2019
CROSSREFS
KEYWORD
nonn
AUTHOR
Gus Wiseman, Jan 17 2019
STATUS
approved
page 1 2 3 4

Search completed in 0.028 seconds

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified August 30 03:24 EDT 2024. Contains 375523 sequences. (Running on oeis4.)