[go: up one dir, main page]

login
A259793
Number of partitions of n^4 into fourth powers.
15
1, 1, 2, 7, 36, 253, 1886, 14800, 118238, 955639, 7750456, 62777522, 506272363, 4056634991, 32252971687, 254209569990, 1985108901344, 15352968310930, 117579612410477, 891596419221856, 6694250497509934, 49768995849050468, 366423320400440927, 2671969175372760210
OFFSET
0,3
LINKS
Alois P. Heinz and Vaclav Kotesovec, Table of n, a(n) for n = 0..63 (terms 0..45 from Alois P. Heinz)
G. H. Hardy and S. Ramanujan, Asymptotic formulae in combinatory analysis, Proceedings of the London Mathematical Society, 2, XVI, 1917, p. 373.
FORMULA
a(n) = [x^(n^4)] Product_{j>=1} 1/(1-x^(j^4)). - Alois P. Heinz, Jul 10 2015
a(n) = A046042(n^4). - Vaclav Kotesovec, Aug 19 2015
a(n) ~ exp(5 * (Gamma(1/4)*Zeta(5/4))^(4/5) * n^(4/5) / 2^(16/5)) * (Gamma(1/4)*Zeta(5/4))^(4/5) / (2^(47/10) * sqrt(5) * Pi^(5/2) * n^(26/5)) [after Hardy & Ramanujan, 1917]. - Vaclav Kotesovec, Dec 29 2016
MAPLE
b:= proc(n, i) option remember; `if`(n=0 or i=1, 1,
b(n, i-1) +`if`(i^4>n, 0, b(n-i^4, i)))
end:
a:= n-> b(n^4, n):
seq(a(n), n=0..23); # Alois P. Heinz, Jul 10 2015
MATHEMATICA
$RecursionLimit = 10^4; b[n_, i_] := b[n, i] = If[n==0 || i==1, 1, b[n, i-1] + If[i^4>n, 0, b[n-i^4, i]]]; a[n_] := b[n^4, n]; Table[a[n], {n, 0, 23}] (* Jean-François Alcover, Dec 06 2016 after Alois P. Heinz *)
CROSSREFS
A row of the array in A259799.
Sequence in context: A034430 A143805 A249637 * A112293 A090352 A123549
KEYWORD
nonn
AUTHOR
N. J. A. Sloane, Jul 06 2015
EXTENSIONS
More terms from Alois P. Heinz, Jul 10 2015
STATUS
approved