[go: up one dir, main page]

login
Search: a008289 -id:a008289
     Sort: relevance | references | number | modified | created      Format: long | short | data
a(n) is the minimal position at which the maximal value of row n appears in row n of triangle A008289.
+20
3
1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 2, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7
OFFSET
1,5
COMMENTS
Except rows 3, 4, 10, 11, 21 of triangle A008289, all the other rows up to row number 10^6 contain a single maximal value.
Conjecture: for n >= 22 there is a unique maximal value in row n of triangle A008289.
LINKS
Paul Erdős, On some asymptotic formulas in the theory of partitions, Bull. Amer. Math. Soc. 52 (1946), no. 2, 185--188.
B. Richmond and A. Knopfmacher, Compositions with distinct parts, Aequationes Mathematicae 49 (1995), pp. 86-97.
G. Szekeres, Some asymptotic formulas in the theory of partitions (II), Quart. J. Math. Oxford (2), 4(1953), 96-111.
FORMULA
a(n) = min argmax(k->Q(n,k), k=1..m), that is a(n) = min{k, Q(n,k) = max{Q(n,p), p=1..m}}, where m = A003056(n) and Q(n,k) is defined by A008289.
a(n) ~ K*sqrt(n) + O(1), where K = 2*sqrt(3)*log(2)/Pi = 0.76430413884... (A131266).
EXAMPLE
For n=9, a(9)=2 because A003056(9)=3 and max{Q(9,p), p=1..3}=4 and Q(9,2)=4.
PROG
(PARI)
Q(N) = {
my(q = vector(N)); q[1] = [1, 0, 0, 0];
for (n = 2, N,
my(m = (sqrtint(8*n+1) - 1)\2);
q[n] = vector((1 + (m>>2)) << 2); q[n][1] = 1;
for (k = 2, m, q[n][k] = q[n-k][k] + q[n-k][k-1]));
return(q);
};
seq(N) = {
my(a = vector(N), q = Q(N), vmx = apply(vecmax, q));
for (n = 1, N, a[n] = vecmin(select(v->v==vmx[n], q[n], 1)));
a;
};
seq(86) \\ updated by Gheorghe Coserea, Jun 02 2018
CROSSREFS
KEYWORD
nonn
AUTHOR
Gheorghe Coserea, Nov 04 2015
STATUS
approved
Eigenvector of the triangle of distinct partitions (A008289), so that: a(n) = Sum_{k=1..tri(n)} A008289(n,k)*a(k) for n>=1 with a(1)=1, where tri(n) = floor((sqrt(8*n+1)-1)/2).
+20
2
1, 1, 2, 2, 3, 5, 6, 8, 11, 15, 18, 24, 29, 37, 47, 57, 69, 86, 103, 125, 154, 183, 220, 264, 316, 375, 450, 533, 631, 747, 882, 1035, 1222, 1428, 1674, 1959, 2282, 2653, 3088, 3578, 4142, 4790, 5525, 6363, 7330, 8410, 9644, 11050, 12633, 14424, 16459, 18743
OFFSET
1,3
LINKS
MAPLE
b:= proc(n, i) b(n, i):= `if`(n=0, [1], `if`(i<1, [], zip((x, y)
-> x+y, b(n, i-1), `if`(i>n, [], [0, b(n-i, i-1)[]]), 0)))
end:
a:= proc(n) option remember; local l; l:= b(n, n);
`if`(n=1, 1, add(l[i+1]*a(i), i=1..nops(l)-1))
end:
seq (a(n), n=1..60); # Alois P. Heinz, Nov 18 2012
MATHEMATICA
zip = With[{m = Max[Length[#1], Length[#2]]}, PadRight[#1, m] + PadRight[#2, m]]&; b[n_, i_] := b[n, i] = If[n == 0, {1}, If[i < 1, {}, zip[b[n, i-1], If[i>n, {}, Join[{0}, b[n-i, i-1]]]]]]; a[n_] := a[n] = ( l = b[n, n]; If[n == 1, 1, Sum[l[[i+1]]*a[i], {i, 1, Length[l]-1}]]); Table[a[n], {n, 1, 60}] (* Jean-François Alcover, Feb 12 2017, after Alois P. Heinz *)
PROG
(PARI) {a(n)=if(n<0, 0, if(n==1, 1, sum(k=1, floor((sqrt(8*n+1)-1)/2), a(k)*polcoeff(polcoeff(prod(i=1, n, 1+y*x^i, 1+x*O(x^n)), n, x), k, y))))}
CROSSREFS
Cf. A008289.
KEYWORD
nonn
AUTHOR
Paul D. Hanna, May 07 2006
STATUS
approved
Square row sums of the table A008289 (A060016).
+20
0
1, 1, 1, 2, 2, 5, 6, 11, 14, 26, 34, 52, 79, 110, 162, 231, 328, 446, 660, 872, 1236, 1660, 2327, 3060, 4238, 5586, 7595, 9988, 13376, 17470, 23318, 30286, 39744, 51676, 67276, 86929, 112390, 144472, 185428, 237826, 303171, 386468, 490838, 622882, 786068, 995118, 1249838, 1573522, 1970542
OFFSET
0,4
FORMULA
a(n) = sum(q(n,k)^k,k=0..n), where q(n,k) is the number of partitions of n into k distinct parts (A008289, A060016).
MATHEMATICA
qq[n_] := CoefficientList[Series[Sum[x^Binomial[k+1, 2]y^k/Product[1-x^i, {i, 1, k}], {k, 0, n}], {x, 0, n}, {y, 0, n}], {x, y}]
Total[Transpose[Map[#^2 &, qq[100]]]]
CROSSREFS
KEYWORD
nonn
AUTHOR
Emanuele Munarini, Feb 28 2014
STATUS
approved
Number of compositions (ordered partitions) of n into distinct parts.
+10
216
1, 1, 1, 3, 3, 5, 11, 13, 19, 27, 57, 65, 101, 133, 193, 351, 435, 617, 851, 1177, 1555, 2751, 3297, 4757, 6293, 8761, 11305, 15603, 24315, 30461, 41867, 55741, 74875, 98043, 130809, 168425, 257405, 315973, 431065, 558327, 751491, 958265, 1277867, 1621273
OFFSET
0,4
COMMENTS
a(n) = the number of different ways to run up a staircase with n steps, taking steps of distinct sizes where the order matters and there is no other restriction on the number or the size of each step taken. - Mohammad K. Azarian, May 21 2008
Compositions into distinct parts are equivalent to (1,1)-avoiding compositions. - Gus Wiseman, Jun 25 2020
All terms are odd. - Alois P. Heinz, Apr 09 2021
REFERENCES
Mohammad K. Azarian, A Generalization of the Climbing Stairs Problem II, Missouri Journal of Mathematical Sciences, Vol. 16, No. 1, Winter 2004, pp. 12-17.
LINKS
Alois P. Heinz, Table of n, a(n) for n = 0..10000 (first 1001 terms from T. D. Noe)
C. G. Bower, Transforms (2)
B. Richmond and A. Knopfmacher, Compositions with distinct parts, Aequationes Mathematicae 49 (1995), pp. 86-97.
B. Richmond and A. Knopfmacher, Compositions with distinct parts, Aequationes Mathematicae 49 (1995), pp. 86-97. (free access)
FORMULA
"AGK" (ordered, elements, unlabeled) transform of 1, 1, 1, 1, ...
G.f.: Sum_{k>=0} k! * x^((k^2+k)/2) / Product_{j=1..k} (1-x^j). - David W. Wilson May 04 2000
a(n) = Sum_{m=1..n} A008289(n,m)*m!. - Geoffrey Critzer, Sep 07 2012
EXAMPLE
a(6) = 11 because 6 = 5+1 = 4+2 = 3+2+1 = 3+1+2 = 2+4 = 2+3+1 = 2+1+3 = 1+5 = 1+3+2 = 1+2+3.
From Gus Wiseman, Jun 25 2020: (Start)
The a(0) = 1 through a(7) = 13 strict compositions:
() (1) (2) (3) (4) (5) (6) (7)
(1,2) (1,3) (1,4) (1,5) (1,6)
(2,1) (3,1) (2,3) (2,4) (2,5)
(3,2) (4,2) (3,4)
(4,1) (5,1) (4,3)
(1,2,3) (5,2)
(1,3,2) (6,1)
(2,1,3) (1,2,4)
(2,3,1) (1,4,2)
(3,1,2) (2,1,4)
(3,2,1) (2,4,1)
(4,1,2)
(4,2,1)
(End)
MAPLE
b:= proc(n, i) b(n, i):= `if`(n=0, [1], `if`(i<1, [], zip((x, y)
-> x+y, b(n, i-1), `if`(i>n, [], [0, b(n-i, i-1)[]]), 0))) end:
a:= proc(n) local l; l:=b(n, n): add((i-1)! *l[i], i=1..nops(l)) end:
seq(a(n), n=0..50); # Alois P. Heinz, Dec 12 2012
# second Maple program:
T:= proc(n, k) option remember; `if`(k<0 or n<0, 0,
`if`(k=0, `if`(n=0, 1, 0), T(n-k, k) +k*T(n-k, k-1)))
end:
a:= n-> add(T(n, k), k=0..floor((sqrt(8*n+1)-1)/2)):
seq(a(n), n=0..60); # Alois P. Heinz, Sep 04 2015
MATHEMATICA
f[list_]:=Length[list]!; Table[Total[Map[f, Select[IntegerPartitions[n], Sort[#] == Union[#] &]]], {n, 0, 30}]
T[n_, k_] := T[n, k] = If[k<0 || n<0, 0, If[k==0, If[n==0, 1, 0], T[n-k, k] + k*T[n-k, k-1]]]; a[n_] := Sum[T[n, k], {k, 0, Floor[(Sqrt[8*n + 1] - 1) / 2]}]; Table[a[n], {n, 0, 60}] (* Jean-François Alcover, Sep 22 2015, after Alois P. Heinz *)
PROG
(PARI)
N=66; q='q+O('q^N);
gf=sum(n=0, N, n!*q^(n*(n+1)/2) / prod(k=1, n, 1-q^k ) );
Vec(gf)
/* Joerg Arndt, Oct 20 2012 */
(PARI)
Q(N) = { \\ A008289
my(q = vector(N)); q[1] = [1, 0, 0, 0];
for (n = 2, N,
my(m = (sqrtint(8*n+1) - 1)\2);
q[n] = vector((1 + (m>>2)) << 2); q[n][1] = 1;
for (k = 2, m, q[n][k] = q[n-k][k] + q[n-k][k-1]));
return(q);
};
seq(N) = concat(1, apply(q -> sum(k = 1, #q, q[k] * k!), Q(N)));
seq(43) \\ Gheorghe Coserea, Sep 09 2018
CROSSREFS
Row sums of A241719.
Main diagonal of A261960.
Dominated by A003242 (anti-run compositions).
These compositions are ranked by A233564.
(1,1)-avoiding patterns are counted by A000142.
Numbers with strict prime signature are A130091.
(1,1,1)-avoiding compositions are counted by A232432.
(1,1)-matching compositions are counted by A261982.
Inseparable partitions are counted by A325535.
Patterns matched by compositions are counted by A335456.
Strict permutations of prime indices are counted by A335489.
KEYWORD
nonn,easy,nice
AUTHOR
Christian G. Bower, Apr 01 1998
STATUS
approved
Sphenic numbers: products of 3 distinct primes.
(Formerly M5207)
+10
193
30, 42, 66, 70, 78, 102, 105, 110, 114, 130, 138, 154, 165, 170, 174, 182, 186, 190, 195, 222, 230, 231, 238, 246, 255, 258, 266, 273, 282, 285, 286, 290, 310, 318, 322, 345, 354, 357, 366, 370, 374, 385, 399, 402, 406, 410, 418, 426, 429, 430, 434, 435, 438
OFFSET
1,1
COMMENTS
Note the distinctions between this and "n has exactly three prime factors" (A014612) or "n has exactly three distinct prime factors." (A033992). The word "sphenic" also means "shaped like a wedge" [American Heritage Dictionary] as in dentation with "sphenic molars." - Jonathan Vos Post, Sep 11 2005
Also the volume of a sphenic brick. A sphenic brick is a rectangular parallelepiped whose sides are components of a sphenic number, namely whose sides are three distinct primes. Example: The distinct prime triple (3,5,7) produces a 3x5x7 unit brick which has volume 105 cubic units. 3-D analog of 2-D A037074 Product of twin primes, per Cino Hilliard's comment. Compare with 3-D A107768 Golden 3-almost primes = Volumes of bricks (rectangular parallelepipeds) each of whose faces has golden semiprime area. - Jonathan Vos Post, Jan 08 2007
Sum(n>=1, 1/a(n)^s) = (1/6)*(P(s)^3 - P(3*s) - 3*(P(s)*P(2*s)-P(3*s))), where P is prime zeta function. - Enrique Pérez Herrero, Jun 28 2012
Also numbers n with A001222(n)=3 and A001221(n)=3. - Enrique Pérez Herrero, Jun 28 2012
n = 265550 is the smallest n with a(n) (=1279789) < A006881(n) (=1279793). - Peter Dolland, Apr 11 2020
REFERENCES
N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
"Sphenic", The American Heritage Dictionary of the English Language, Fourth Edition, Houghton Mifflin Company, 2000.
FORMULA
A008683(a(n)) = -1.
A000005(a(n)) = 8. - R. J. Mathar, Aug 14 2009
A002033(a(n)-1) = 13. - Juri-Stepan Gerasimov, Oct 07 2009, R. J. Mathar, Oct 14 2009
A178254(a(n)) = 36. - Reinhard Zumkeller, May 24 2010
A050326(a(n)) = 5, subsequence of A225228. - Reinhard Zumkeller, May 03 2013
a(n) ~ 2n log n/(log log n)^2. - Charles R Greathouse IV, Sep 14 2015
EXAMPLE
From Gus Wiseman, Nov 05 2020: (Start)
Also Heinz numbers of strict integer partitions into three parts, where the Heinz number of a partition (y_1,...,y_k) is prime(y_1)*...*prime(y_k). These partitions are counted by A001399(n-6) = A069905(n-3), with ordered version A001399(n-6)*6. The sequence of terms together with their prime indices begins:
30: {1,2,3} 182: {1,4,6} 286: {1,5,6}
42: {1,2,4} 186: {1,2,11} 290: {1,3,10}
66: {1,2,5} 190: {1,3,8} 310: {1,3,11}
70: {1,3,4} 195: {2,3,6} 318: {1,2,16}
78: {1,2,6} 222: {1,2,12} 322: {1,4,9}
102: {1,2,7} 230: {1,3,9} 345: {2,3,9}
105: {2,3,4} 231: {2,4,5} 354: {1,2,17}
110: {1,3,5} 238: {1,4,7} 357: {2,4,7}
114: {1,2,8} 246: {1,2,13} 366: {1,2,18}
130: {1,3,6} 255: {2,3,7} 370: {1,3,12}
138: {1,2,9} 258: {1,2,14} 374: {1,5,7}
154: {1,4,5} 266: {1,4,8} 385: {3,4,5}
165: {2,3,5} 273: {2,4,6} 399: {2,4,8}
170: {1,3,7} 282: {1,2,15} 402: {1,2,19}
174: {1,2,10} 285: {2,3,8} 406: {1,4,10}
(End)
MAPLE
with(numtheory): a:=proc(n) if bigomega(n)=3 and nops(factorset(n))=3 then n else fi end: seq(a(n), n=1..450); # Emeric Deutsch
A007304 := proc(n)
option remember;
local a;
if n =1 then
30;
else
for a from procname(n-1)+1 do
if bigomega(a)=3 and nops(factorset(a))=3 then
return a;
end if;
end do:
end if;
end proc: # R. J. Mathar, Dec 06 2016
MATHEMATICA
Union[Flatten[Table[Prime[n]*Prime[m]*Prime[k], {k, 20}, {n, k+1, 20}, {m, n+1, 20}]]]
Take[ Sort@ Flatten@ Table[ Prime@i Prime@j Prime@k, {i, 3, 21}, {j, 2, i - 1}, {k, j - 1}], 53] (* Robert G. Wilson v *)
With[{upto=500}, Sort[Select[Times@@@Subsets[Prime[Range[Ceiling[upto/6]]], {3}], #<=upto&]]] (* Harvey P. Dale, Jan 08 2015 *)
Select[Range[100], SquareFreeQ[#]&&PrimeOmega[#]==3&] (* Gus Wiseman, Nov 05 2020 *)
PROG
(PARI) for(n=1, 1e4, if(bigomega(n)==3 && omega(n)==3, print1(n", "))) \\ Charles R Greathouse IV, Jun 10 2011
(PARI) list(lim)=my(v=List(), t); forprime(p=2, (lim)^(1/3), forprime(q=p+1, sqrt(lim\p), t=p*q; forprime(r=q+1, lim\t, listput(v, t*r)))); vecsort(Vec(v)) \\ Charles R Greathouse IV, Jul 20 2011
(Haskell)
a007304 n = a007304_list !! (n-1)
a007304_list = filter f [1..] where
f u = p < q && q < w && a010051 w == 1 where
p = a020639 u; v = div u p; q = a020639 v; w = div v q
-- Reinhard Zumkeller, Mar 23 2014
(Python)
from math import isqrt
from sympy import primepi, primerange, integer_nthroot
def A007304(n):
def f(x): return int(n+x-sum(primepi(x//(k*m))-b for a, k in enumerate(primerange(integer_nthroot(x, 3)[0]+1), 1) for b, m in enumerate(primerange(k+1, isqrt(x//k)+1), a+1)))
kmin, kmax = 0, 1
while f(kmax) > kmax:
kmax <<= 1
while kmax-kmin > 1:
kmid = kmax+kmin>>1
if f(kmid) <= kmid:
kmax = kmid
else:
kmin = kmid
return kmax # Chai Wah Wu, Aug 29 2024
CROSSREFS
Products of exactly k distinct primes, for k = 1 to 6: A000040, A006881. A007304, A046386, A046387, A067885.
Cf. A162143 (a(n)^2).
For the following, NNS means "not necessarily strict".
A014612 is the NNS version.
A046389 is the restriction to odds (NNS: A046316).
A075819 is the restriction to evens (NNS: A075818).
A239656 gives first differences.
A285508 lists terms of A014612 that are not squarefree.
A307534 is the case where all prime indices are odd (NNS: A338471).
A337453 is a different ranking of ordered triples (NNS: A014311).
A338557 is the case where all prime indices are even (NNS: A338556).
A001399(n-6) counts strict 3-part partitions (NNS: A001399(n-3)).
A005117 lists squarefree numbers.
A008289 counts strict partitions by sum and length.
A220377 counts 3-part pairwise coprime strict partitions (NNS: A307719).
KEYWORD
nonn,easy
AUTHOR
EXTENSIONS
More terms from Robert G. Wilson v, Jan 04 2006
Comment concerning number of divisors corrected by R. J. Mathar, Aug 14 2009
STATUS
approved
Triangle read by rows where T(n,k) is the number of integer partitions of n with median k = 1..n.
+10
97
1, 1, 1, 1, 0, 1, 2, 2, 0, 1, 3, 1, 0, 0, 1, 4, 2, 3, 0, 0, 1, 6, 3, 1, 0, 0, 0, 1, 8, 6, 2, 4, 0, 0, 0, 1, 11, 7, 3, 1, 0, 0, 0, 0, 1, 15, 10, 4, 2, 5, 0, 0, 0, 0, 1, 20, 13, 7, 3, 1, 0, 0, 0, 0, 0, 1, 26, 19, 11, 4, 2, 6, 0, 0, 0, 0, 0, 1
OFFSET
1,7
COMMENTS
The median of a multiset is either the middle part (for odd length), or the average of the two middle parts (for even length).
EXAMPLE
Triangle begins:
1
1 1
1 0 1
2 2 0 1
3 1 0 0 1
4 2 3 0 0 1
6 3 1 0 0 0 1
8 6 2 4 0 0 0 1
11 7 3 1 0 0 0 0 1
15 10 4 2 5 0 0 0 0 1
20 13 7 3 1 0 0 0 0 0 1
26 19 11 4 2 6 0 0 0 0 0 1
35 24 14 5 3 1 0 0 0 0 0 0 1
45 34 17 8 4 2 7 0 0 0 0 0 0 1
58 42 23 12 5 3 1 0 0 0 0 0 0 0 1
For example, row n = 9 counts the following partitions:
(7,1,1) (5,2,2) (3,3,3) (4,4,1) . . . . (9)
(6,1,1,1) (6,2,1) (4,3,2)
(3,3,1,1,1) (3,2,2,2) (5,3,1)
(4,2,1,1,1) (4,2,2,1)
(5,1,1,1,1) (4,3,1,1)
(3,2,1,1,1,1) (2,2,2,2,1)
(4,1,1,1,1,1) (3,2,2,1,1)
(2,2,1,1,1,1,1)
(3,1,1,1,1,1,1)
(2,1,1,1,1,1,1,1)
(1,1,1,1,1,1,1,1,1)
MATHEMATICA
Table[Length[Select[IntegerPartitions[n], Median[#]==k&]], {n, 15}, {k, n}]
CROSSREFS
Column k=1 is A027336(n+1).
For mean instead of median we have A058398, see also A008284, A327482.
Row sums are A325347.
The mean statistic is ranked by A326567/A326568.
Including half-steps gives A359893.
The odd-length case is A359902.
The median statistic is ranked by A360005(n)/2.
First appearances of medians are ranked by A360006, A360007.
A000041 counts partitions, strict A000009.
A027193 counts odd-length partitions, strict A067659, ranked by A026424.
A067538 counts partitions w/ integer mean, strict A102627, ranks A316413.
A240219 counts partitions w/ the same mean as median, complement A359894.
KEYWORD
nonn,tabl
AUTHOR
Gus Wiseman, Jan 21 2023
STATUS
approved
Square array T(n,k) read by antidiagonals giving number of ways to distribute n indistinguishable objects in k indistinguishable containers; containers may be left empty.
+10
88
1, 0, 1, 0, 1, 1, 0, 1, 1, 1, 0, 1, 2, 1, 1, 0, 1, 2, 2, 1, 1, 0, 1, 3, 3, 2, 1, 1, 0, 1, 3, 4, 3, 2, 1, 1, 0, 1, 4, 5, 5, 3, 2, 1, 1, 0, 1, 4, 7, 6, 5, 3, 2, 1, 1, 0, 1, 5, 8, 9, 7, 5, 3, 2, 1, 1, 0, 1, 5, 10, 11, 10, 7, 5, 3, 2, 1, 1, 0, 1, 6, 12, 15, 13, 11, 7, 5, 3, 2, 1, 1, 0, 1, 6, 14, 18, 18, 14, 11, 7, 5, 3, 2, 1, 1
OFFSET
0,13
COMMENTS
Regarded as a triangular table, this is another version of the number of partitions of n into k parts, A008284. - Franklin T. Adams-Watters, Dec 18 2006
From Gus Wiseman, Feb 10 2021: (Start)
T(n,k) is also the number of partitions of n with greatest part k, if we assume the greatest part of an empty partition to be 0. Row n = 9 counts the following partitions:
111111111 22221 333 432 54 63 72 81 9
222111 3222 441 522 621 711
2211111 3321 4221 531 6111
21111111 32211 4311 5211
33111 42111 51111
321111 411111
3111111
(End)
LINKS
Combinatorial Object Server, Information on Numerical Partitions
FindStat - Combinatorial Statistic Finder, The length of the partition.
FORMULA
T(0, k) = 1, T(n, 0) = 0 (n>0), T(1, k) = 1 (k>0), T(n, 1) = 1 (n>0), T(n, k) = 0 for n < 0, T(n, k) = Sum[ T(n-k+i, k-i), i=0...k-1] Or, T(n, 1) = T(n, n) = 1, T(n, k) = 0 (k>n), T(n, k) = T(n-1, k-1) + T(n-k, k).
G.f. Product_{j=0..infinity} 1/(1-xy^j). Regarded as a triangular array, g.f. Product_{j=1..infinity} 1/(1-xy^j). - Franklin T. Adams-Watters, Dec 18 2006
O.g.f. of column No. k of the triangle a(n,k) is x^k/product(1-x^j,j=1..k), k>=0 (the undefined product for k=0 is put to 1). - Wolfdieter Lang, Dec 03 2012
EXAMPLE
Table begins (upper left corner = T(0,0)):
1 1 1 1 1 1 1 1 1 ...
0 1 1 1 1 1 1 1 1 ...
0 1 2 2 2 2 2 2 2 ...
0 1 2 3 3 3 3 3 3 ...
0 1 3 4 5 5 5 5 5 ...
0 1 3 5 6 7 7 7 7 ...
0 1 4 7 9 10 11 11 11 ...
0 1 4 8 11 13 14 15 15 ...
0 1 5 10 15 18 20 21 22 ...
There is 1 way to distribute 0 objects into k containers: T(0, k) = 1. The different ways for n=4, k=3 are: (oooo)()(), (ooo)(o)(), (oo)(oo)(), (oo)(o)(o), so T(4, 3) = 4.
From Wolfdieter Lang, Dec 03 2012 (Start)
The triangle a(n,k) = T(n-k,k) begins:
n\k 0 1 2 3 4 5 6 7 8 9 10 ...
00 1
01 0 1
02 0 1 1
03 0 1 1 1
04 0 1 2 1 1
05 0 1 2 2 1 1
06 0 1 3 3 2 1 1
07 0 1 3 4 3 2 1 1
08 0 1 4 5 5 3 2 1 1
09 0 1 4 7 6 5 3 2 1 1
10 0 1 5 8 9 7 5 3 2 1 1
...
Row n=5 is, for k=1..5, [1,2,2,1,1] which gives the number of partitions of n=5 with k parts. See A008284 and the Franklin T. Adams-Watters comment above. (End)
From Gus Wiseman, Feb 10 2021: (Start)
Row n = 9 counts the following partitions:
9 54 333 3222 22221 222111 2211111 21111111 111111111
63 432 3321 32211 321111 3111111
72 441 4221 33111 411111
81 522 4311 42111
531 5211 51111
621 6111
711
(End)
MATHEMATICA
Flatten[Table[Length[IntegerPartitions[n, {k}]], {n, 0, 20}, {k, 0, n}]] (* Emanuele Munarini, Feb 24 2014 *)
PROG
(Sage)
from sage.combinat.partition import number_of_partitions_length
[[number_of_partitions_length(n, k) for k in (0..n)] for n in (0..10)] # Peter Luschny, Aug 01 2015
CROSSREFS
Sum of antidiagonal entries T(n, k) with n+k=m equals A000041(m).
Alternating row sums are A081362.
Cf. A008284.
The version for factorizations is A316439.
The version for set partitions is A048993/A080510.
The version for strict partitions is A008289/A059607.
A047993 counts balanced partitions, ranked by A106529.
A063995/A105806 count partitions by Dyson rank.
KEYWORD
easy,nonn,tabl
AUTHOR
Martin Wohlgemuth (mail(AT)matroid.com), Jul 05 2002
EXTENSIONS
Corrected by Franklin T. Adams-Watters, Dec 18 2006
STATUS
approved
Number of partitions of n into distinct parts such that number of parts is odd.
+10
85
0, 1, 1, 1, 1, 1, 2, 2, 3, 4, 5, 6, 8, 9, 11, 14, 16, 19, 23, 27, 32, 38, 44, 52, 61, 71, 82, 96, 111, 128, 148, 170, 195, 224, 256, 293, 334, 380, 432, 491, 557, 630, 713, 805, 908, 1024, 1152, 1295, 1455, 1632, 1829, 2048, 2291, 2560, 2859, 3189, 3554, 3958, 4404
OFFSET
0,7
COMMENTS
Ramanujan theta functions: phi(q) := Sum_{k=-oo..oo} q^(k^2) (A000122), chi(q) := Prod_{k>=0} (1+q^(2k+1)) (A000700).
LINKS
Joerg Arndt, Matters Computational (The Fxtbook), end of section 16.4.2 "Partitions into distinct parts", pp.348ff
Mircea Merca, Combinatorial interpretations of a recent convolution for the number of divisors of a positive integer, Journal of Number Theory, Volume 160 (March 2016), Pages 60-75, function q_o(n).
Eric Weisstein's World of Mathematics, Ramanujan Theta Functions
FORMULA
For g.f. see under A067661.
a(n) = (A000009(n)-A010815(n))/2. - Vladeta Jovovic, Feb 24 2002
Expansion of (1-phi(-q))/(2*chi(-q)) in powers of q where phi(),chi() are Ramanujan theta functions. - Michael Somos, Feb 14 2006
G.f.: sum(n>=1, q^(2*n^2-n) / prod(k=1..2*n-1, 1-q^k ) ). [Joerg Arndt, Apr 01 2014]
a(n) = A067661(n) - A010815(n). - Andrey Zabolotskiy, Apr 12 2017
A000009(n) = a(n) + A067661(n). - Gus Wiseman, Jan 09 2021
EXAMPLE
From Gus Wiseman, Jan 09 2021: (Start)
The a(5) = 1 through a(15) = 14 partitions (A-F = 10..15):
5 6 7 8 9 A B C D E F
321 421 431 432 532 542 543 643 653 654
521 531 541 632 642 652 743 753
621 631 641 651 742 752 762
721 731 732 751 761 843
821 741 832 842 852
831 841 851 861
921 931 932 942
A21 941 951
A31 A32
B21 A41
B31
C21
54321
(End)
MAPLE
b:= proc(n, i, t) option remember; `if`(n>i*(i+1)/2, 0,
`if`(n=0, t, add(b(n-i*j, i-1, abs(t-j)), j=0..min(n/i, 1))))
end:
a:= n-> b(n$2, 0):
seq(a(n), n=0..80); # Alois P. Heinz, Apr 01 2014
MATHEMATICA
b[n_, i_, t_] := b[n, i, t] = If[n > i*(i + 1)/2, 0, If[n == 0, t, Sum[b[n - i*j, i - 1, Abs[t - j]], {j, 0, Min[n/i, 1]}]]]; a[n_] := b[n, n, 0]; Table[a[n], {n, 0, 80}] (* Jean-François Alcover, Jan 16 2015, after Alois P. Heinz *)
CoefficientList[Normal[Series[(QPochhammer[-x, x]-QPochhammer[x])/2, {x, 0, 100}]], x] (* Andrey Zabolotskiy, Apr 12 2017 *)
Table[Length[Select[IntegerPartitions[n], UnsameQ@@#&&OddQ[Length[#]]&]], {n, 0, 30}] (* Gus Wiseman, Jan 09 2021 *)
PROG
(PARI) {a(n)=local(A); if(n<0, 0, A=x*O(x^n); polcoeff( (eta(x^2+A)/eta(x+A) - eta(x+A))/2, n))} /* Michael Somos, Feb 14 2006 */
(PARI) N=66; q='q+O('q^N); S=1+2*sqrtint(N);
gf=sum(n=1, S, (n%2!=0) * q^(n*(n+1)/2) / prod(k=1, n, 1-q^k ) );
concat( [0], Vec(gf) ) /* Joerg Arndt, Oct 20 2012 */
(PARI) N=66; q='q+O('q^N); S=1+sqrtint(N);
gf=sum(n=1, S, q^(2*n^2-n) / prod(k=1, 2*n-1, 1-q^k ) );
concat( [0], Vec(gf) ) \\ Joerg Arndt, Apr 01 2014
CROSSREFS
Dominates A000009.
Numbers with these strict partitions as binary indices are A000069.
The non-strict version is A027193.
The Heinz numbers of these partitions are A030059.
The even version is A067661.
The version for rank is A117193, with non-strict version A101707.
The ordered version is A332304, with non-strict version A166444.
Other cases of odd length:
- A024429 counts set partitions of odd length.
- A089677 counts ordered set partitions of odd length.
- A174726 counts ordered factorizations of odd length.
- A339890 counts factorizations of odd length.
A008289 counts strict partitions by sum and length.
A026804 counts partitions whose least part is odd, with strict case A026832.
KEYWORD
easy,nonn
AUTHOR
Naohiro Nomoto, Feb 23 2002
STATUS
approved
Number of strict integer partitions of n such that no part can be written as a nonnegative linear combination of the others.
+10
81
1, 1, 1, 1, 1, 2, 1, 3, 2, 3, 3, 5, 3, 6, 5, 7, 6, 9, 7, 11, 10, 14, 12, 16, 15, 20, 17, 24, 22, 27, 29, 32, 30, 41, 36, 49, 45, 50, 52, 65, 63, 70, 77, 80, 83, 104, 98, 107, 116, 126, 134, 152, 148, 162, 180, 196, 195, 227, 227, 238, 272, 271, 293, 333, 325
OFFSET
0,6
COMMENTS
A way of writing n as a (presumed nonnegative) linear combination of a finite sequence y is any sequence of pairs (k_i,y_i) such that k_i >= 0 and Sum k_i*y_i = n. For example, the pairs ((3,1),(1,1),(1,1),(0,2)) are a way of writing 5 as a linear combination of (1,1,1,2), namely 5 = 3*1 + 1*1 + 1*1 + 0*2. Of course, there are A000041(n) ways to write n as a linear combination of (1..n).
EXAMPLE
The a(16) = 6 through a(22) = 12 strict partitions:
(16) (17) (18) (19) (20) (21) (22)
(9,7) (9,8) (10,8) (10,9) (11,9) (12,9) (13,9)
(10,6) (10,7) (11,7) (11,8) (12,8) (13,8) (14,8)
(11,5) (11,6) (13,5) (12,7) (13,7) (15,6) (15,7)
(13,3) (12,5) (14,4) (13,6) (14,6) (16,5) (16,6)
(7,5,4) (13,4) (7,6,5) (14,5) (17,3) (17,4) (17,5)
(14,3) (8,7,3) (15,4) (8,7,5) (19,2) (18,4)
(15,2) (16,3) (9,6,5) (11,10) (19,3)
(7,6,4) (17,2) (9,7,4) (8,7,6) (12,10)
(8,6,5) (11,5,4) (9,7,5) (9,7,6)
(9,6,4) (10,7,4) (9,8,5)
(10,8,3) (7,6,5,4)
(11,6,4)
(11,7,3)
MATHEMATICA
combs[n_, y_]:=With[{s=Table[{k, i}, {k, y}, {i, 0, Floor[n/k]}]}, Select[Tuples[s], Total[Times@@@#]==n&]];
Table[Length[Select[IntegerPartitions[n], UnsameQ@@#&&And@@Table[combs[#[[k]], Delete[#, k]]=={}, {k, Length[#]}]&]], {n, 0, 15}]
PROG
(Python)
from sympy.utilities.iterables import partitions
def A364350(n):
if n <= 1: return 1
alist, c = [set(tuple(sorted(set(p))) for p in partitions(i)) for i in range(n)], 1
for p in partitions(n, k=n-1):
if max(p.values(), default=0)==1:
s = set(p)
if not any(set(t).issubset(s-{q}) for q in s for t in alist[q]):
c += 1
return c # Chai Wah Wu, Sep 23 2023
CROSSREFS
For sums of subsets instead of combinations of partitions we have A151897.
For sums instead of combinations we have A237667, binary A236912.
For subsets instead of partitions we have A326083, complement A364914.
The complement in strict partitions is A364839, non-strict A364913.
A more strict variation is A364915.
The case of all positive coefficients is A365006.
A000041 counts integer partitions, strict A000009.
A008284 counts partitions by length, strict A008289.
A108917 counts knapsack partitions, ranks A299702.
A116861 and A364916 count linear combinations of strict partitions.
A323092 (ranks A320340) and A120641 count double-free partitions.
A364912 counts linear combinations of partitions of k.
KEYWORD
nonn
AUTHOR
Gus Wiseman, Aug 15 2023
EXTENSIONS
More terms and offset corrected by Martin Fuller, Sep 11 2023
STATUS
approved
Number of strict integer partitions of n containing the sum of some subset of the parts. A variation of sum-full strict partitions.
+10
78
0, 0, 0, 0, 0, 0, 1, 0, 1, 0, 3, 1, 4, 3, 8, 6, 11, 10, 17, 16, 26, 25, 39, 39, 54, 60, 82, 84, 116, 126, 160, 177, 222, 242, 302, 337, 402, 453, 542, 601, 722, 803, 936, 1057, 1234, 1373, 1601, 1793, 2056, 2312, 2658, 2950, 3395, 3789, 4281, 4814, 5452, 6048
OFFSET
0,11
COMMENTS
First differs from A316402 at a(16) = 11 due to (7,5,3,1).
EXAMPLE
The a(6) = 1 through a(16) = 11 partitions (A=10):
(321) . (431) . (532) (5321) (642) (5431) (743) (6432) (853)
(541) (651) (6421) (752) (6531) (862)
(4321) (5421) (7321) (761) (7431) (871)
(6321) (5432) (7521) (6532)
(6431) (9321) (6541)
(6521) (54321) (7432)
(7421) (7621)
(8321) (8431)
(8521)
(A321)
(64321)
MATHEMATICA
Table[Length[Select[IntegerPartitions[n], UnsameQ@@#&&Intersection[#, Total/@Subsets[#, {2, Length[#]}]]!={}&]], {n, 0, 30}]
CROSSREFS
The non-strict complement is A237667, ranks A364531.
The non-strict version is A237668, ranks A364532.
The complement in strict partitions is A364349, binary A364533.
The linear combination-free version is A364350.
For subsets of {1..n} we have A364534, complement A151897.
The binary version is A364670, allowing re-used parts A363226.
A000041 counts integer partitions, strict A000009.
A008284 counts partitions by length, strict A008289.
A108917 counts knapsack partitions, strict A275972, ranks A299702.
A236912 counts binary sum-free partitions, complement A237113.
A323092 counts double-free partitions, ranks A320340.
KEYWORD
nonn
AUTHOR
Gus Wiseman, Aug 01 2023
STATUS
approved

Search completed in 0.095 seconds