[go: up one dir, main page]

login
A179643
Products of exactly 2 distinct squares of primes and a different prime (p^2 * q^2 * r).
20
180, 252, 300, 396, 450, 468, 588, 612, 684, 700, 828, 882, 980, 1044, 1100, 1116, 1300, 1332, 1452, 1476, 1548, 1575, 1692, 1700, 1900, 1908, 2028, 2124, 2156, 2178, 2196, 2205, 2300, 2412, 2420, 2450, 2475, 2548, 2556, 2628, 2844, 2900, 2925, 2988
OFFSET
1,1
COMMENTS
A050326(a(n)) = 5, subsequence of A225228. - Reinhard Zumkeller, May 03 2013
EXAMPLE
180 = 2^2 * 3^2 * 5, 252 = 2^2 * 3^2 * 7, 300 = 2^2 * 3 * 5^2, ...
MATHEMATICA
f[n_]:=Sort[Last/@FactorInteger[n]]=={1, 2, 2}; Select[Range[3000], f]
PROG
(PARI) list(lim)=my(v=List(), t); forprime(p=2, sqrt(lim\12), forprime(q=p+1, sqrt(lim\p^2\2), t=(p*q)^2; forprime(r=2, lim\t, if(p==r||q==r, next); listput(v, t*r)))); vecsort(Vec(v)) \\ Charles R Greathouse IV, Jul 19 2011
KEYWORD
nonn
AUTHOR
STATUS
approved