[go: up one dir, main page]

login
A179695
Numbers of the form p^3*q^2*r^2 where p, q, and r are distinct primes.
7
1800, 2700, 3528, 4500, 5292, 8712, 9800, 12168, 12348, 13068, 18252, 20808, 24200, 24500, 25992, 31212, 33075, 33800, 34300, 38088, 38988, 47432, 47916, 55125, 57132, 57800, 60500, 60552, 66248, 69192, 72200, 77175, 79092, 81675, 84500
OFFSET
1,1
COMMENTS
Subsequence of A225228. - Reinhard Zumkeller, May 03 2013
FORMULA
A050326(a(n)) = 5. - Reinhard Zumkeller, May 03 2013
Sum_{n>=1} 1/a(n) = P(2)^2*P(3)/2 - P(3)*P(4)/2 - P(2)*P(5) + P(7) = 0.0032578591481263202818..., where P is the prime zeta function. - Amiram Eldar, Mar 07 2024
MATHEMATICA
f[n_]:=Sort[Last/@FactorInteger[n]]=={2, 2, 3}; Select[Range[10^5], f]
f[n_]:={Times@@(n^{2, 2, 3}), Times@@(n^{2, 3, 2}), Times@@(n^{3, 2, 2})}; Module[ {nn=20}, Select[Flatten[f/@Subsets[Prime[Range[nn]], {3}]], #<= 72*Prime[ nn]^2&]]//Union (* Harvey P. Dale, Jul 05 2019 *)
PROG
(PARI) list(lim)=my(v=List(), t1, t2); forprime(p=2, (lim\36)^(1/3), t1=p^3; forprime(q=2, sqrt(lim\t1), if(p==q, next); t2=t1*q^2; forprime(r=q+1, sqrt(lim\t2), if(p==r, next); listput(v, t2*r^2)))); vecsort(Vec(v)) \\ Charles R Greathouse IV, Jul 24 2011
CROSSREFS
KEYWORD
nonn
AUTHOR
STATUS
approved