[go: up one dir, main page]

login
A096401
Number of balanced partitions of n into distinct parts: least part is equal to number of parts.
16
1, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 2, 2, 3, 3, 4, 4, 5, 5, 6, 6, 8, 8, 10, 11, 13, 14, 17, 18, 21, 23, 26, 28, 32, 35, 39, 43, 48, 53, 59, 65, 72, 80, 88, 97, 107, 118, 129, 142, 155, 171, 186, 204, 222, 244, 265, 290, 315, 345, 374, 409, 443, 484, 524, 571, 618, 673, 727, 790
OFFSET
1,12
LINKS
FORMULA
G.f.: Sum_{m>=1} (x^(m*(3*m-1)/2)-x^(m*(3*m+1)/2))/Product_{i=1..m} (1-x^i).
a(n) = A025157(n) - A237979(n) = A237977(n) - A237976(n) for n > 0. - Seiichi Manyama, Jan 13 2022
a(n) ~ (1 - A263719) * A025157(n). - Vaclav Kotesovec, Jan 15 2022
EXAMPLE
a(14)=3 because we have 12+2, 7+4+3 and 6+5+3.
MAPLE
G:=sum((x^(m*(3*m-1)/2)-x^(m*(3*m+1)/2))/product(1-x^i, i=1..m), m=1..20): Gser:=series(G, x=0, 80): seq(coeff(Gser, x^n), n=1..78); # Emeric Deutsch, Mar 29 2005
PROG
(PARI) my(N=99, x='x+O('x^N)); Vec(sum(k=1, N, x^(k*(3*k-1)/2)/prod(j=1, k-1, 1-x^j))) \\ Seiichi Manyama, Jan 15 2022
KEYWORD
easy,nonn
AUTHOR
Vladeta Jovovic, Aug 06 2004
EXTENSIONS
More terms from Emeric Deutsch, Mar 29 2005
STATUS
approved