[go: up one dir, main page]

login
Search: a000086 -id:a000086
     Sort: relevance | references | number | modified | created      Format: long | short | data
Number of divisors of n == 1 (mod 3) minus number of divisors of n == 2 (mod 3).
(Formerly M0016 N0002)
+10
71
1, 0, 1, 1, 0, 0, 2, 0, 1, 0, 0, 1, 2, 0, 0, 1, 0, 0, 2, 0, 2, 0, 0, 0, 1, 0, 1, 2, 0, 0, 2, 0, 0, 0, 0, 1, 2, 0, 2, 0, 0, 0, 2, 0, 0, 0, 0, 1, 3, 0, 0, 2, 0, 0, 0, 0, 2, 0, 0, 0, 2, 0, 2, 1, 0, 0, 2, 0, 0, 0, 0, 0, 2, 0, 1, 2, 0, 0, 2, 0, 1, 0, 0, 2, 0, 0, 0, 0, 0, 0, 4, 0, 2, 0, 0, 0, 2, 0, 0, 1, 0, 0, 2, 0, 0, 0, 0, 1, 2, 0, 2, 2, 0, 0
OFFSET
1,7
COMMENTS
Coefficients of Dedekind zeta function for the quadratic number field of discriminant -3. See Formula section for the general expression. - N. J. A. Sloane, Mar 22 2022
Coefficients in expansion of Dirichlet series Product_p (1 - (Kronecker(m,p) + 1)*p^(-s) + Kronecker(m,p) * p^(-2s))^(-1) for m = -3.
(Number of points of norm n in hexagonal lattice) / 6, n>0.
The hexagonal lattice is the familiar 2-dimensional lattice (A_2) in which each point has 6 neighbors. This is sometimes called the triangular lattice.
The first occurrence of a(n) = 1, 2, 3, 4,... is at n= 1, 7, 49, 91, 2401, 637, ... as tabulated in A343771. - R. J. Mathar, Sep 21 2024
REFERENCES
J. H. Conway and N. J. A. Sloane, "Sphere Packings, Lattices and Groups", Springer-Verlag, p. 112, first display.
J. W. L. Glaisher, Table of the excess of the number of (3k+1)-divisors of a number over the number of (3k+2)-divisors, Messenger Math., 31 (1901), 64-72.
D. H. Lehmer, Guide to Tables in the Theory of Numbers. Bulletin No. 105, National Research Council, Washington, DC, 1941, pp. 7-10.
N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
LINKS
G. E. Andrews, Three aspects of partitions, Séminaire Lotharingien de Combinatoire, B25f (1990), 1 p.
Hershel M. Farkas, On an arithmetical function, Ramanujan J., 8(3) (2004), 309-315.
Pavel Guerzhoy and Ka Lun Wong, Farkas' identities with quartic characters, arXiv:1905.06506 [math.NT], 2019.
Christian Kassel and Christophe Reutenauer, The zeta function of the Hilbert scheme of n points on a two-dimensional torus, arXiv:1505.07229v3 [math.AG], 2015. [A later version of this paper has a different title and different contents, and the number-theoretical part of the paper was moved to the publication below.]
Christian Kassel and Christophe Reutenauer, Complete determination of the zeta function of the Hilbert scheme of n points on a two-dimensional torus, arXiv:1610.07793 [math.NT], 2016.
Gabriele Nebe and N. J. A. Sloane, Home page for hexagonal (or triangular) lattice A2.
José Manuel Rodríguez Caballero, Divisors on overlapped intervals and multiplicative functions, arXiv:1709.09621 [math.NT], 2017.
FORMULA
From N. J. A. Sloane, Mar 22 2022 (Start):
The Dedekind zeta function DZ_K(s) for a quadratic field K of discriminant D is as follows.
Here m is defined by K = Q(sqrt(m)) (so m=D/4 if D is a multiple of 4, otherwise m=D).
DZ_K(s) is the product of three terms:
(a) Product_{odd primes p | D} 1/(1-1/p^s)
(b) Product_{odd primes p such that (D|p) = -1} 1/(1-1/p^(2s))
(c) Product_{odd primes p such that (D|p) = 1} 1/(1-1/p^s)^2
and if m is
0,1,2,3,4,5,6,7 mod 8, the prime 2 is to be included in term
-,c,a,a,-,b,a,a, respectively.
For Maple (and PARI) implementations, see link. (End)
G.f. A(x) satisfies 0 = f(A(x), A(x^2), A(x^4)) where f(u, v, w) = u^2 - 3*v^2 + 4*w^2 - 2*u*w + w - v. - Michael Somos, Jul 20 2004
Has a nice Dirichlet series expansion, see PARI line.
G.f.: Sum_{k>0} x^k/(1+x^k+x^(2*k)). - Vladeta Jovovic, Dec 16 2002
a(3*n + 2) = 0, a(3*n) = a(n), a(3*n + 1) = A033687(n). - Michael Somos, Apr 04 2003
G.f. A(x) satisfies 0 = f(A(x), A(x^2), A(x^3), A(x^6)) where f(u1, u2, u3, u6) = (u1 - u3)*(u3 - u6) - (u2 - u6)^2. - Michael Somos, May 20 2005
Multiplicative with a(3^e) = 1, a(p^e) = e+1 if p == 1 (mod 3), a(p^e) = (1+(-1)^e)/2 if p == 2 (mod 3). - Michael Somos, May 20 2005
G.f.: Sum_{k>0} x^(3*k - 2) / (1 - x^(3*k - 2)) - x^(3*k - 1) / (1 - x^(3*k - 1)). - Michael Somos, Nov 02 2005
G.f.: Sum_{n >= 1} q^(n^2)(1-q)(1-q^2)...(1-q^(n-1))/((1-q^(n+1))(1-q^(n+2))...(1-q^(2n))). - Jeremy Lovejoy, Jun 12 2009
a(n) = A001817(n) - A001822(n). - R. J. Mathar, Mar 31 2011
A004016(n) = 6*a(n) unless n=0.
Dirichlet g.f.: zeta(s)*L(chi_2(3),s), with chi_2(3) the nontrivial Dirichlet character modulo 3 (A102283). - Ralf Stephan, Mar 27 2015
From Andrey Zabolotskiy, May 07 2018: (Start)
a(n) = Sum_{ m: m^2|n } A000086(n/m^2).
a(A003136(m)) > 0, a(A034020(m)) = 0 for all m. (End)
Asymptotic mean: Limit_{m->oo} (1/m) * Sum_{k=1..m} a(k) = Pi/(3*sqrt(3)) = 0.604599... (A073010). - Amiram Eldar, Oct 11 2022
EXAMPLE
G.f. = x + x^3 + x^4 + 2*x^7 + x^9 + x^12 + 2*x^13 + x^16 + 2*x^19 + 2*x^21 + ...
MAPLE
A002324 := proc(n)
local a, pe, p, e;
a :=1 ;
for pe in ifactors(n)[2] do
p := op(1, pe) ;
e := op(2, pe) ;
if p = 3 then
;
elif modp(p, 3) = 1 then
a := a*(e+1) ;
else
a := a*(1+(-1)^e)/2 ;
end if;
end do:
a ;
end proc:
seq(A002324(n), n=1..100) ; # R. J. Mathar, Sep 21 2024
MATHEMATICA
dn12[n_]:=Module[{dn=Divisors[n]}, Count[dn, _?(Mod[#, 3]==1&)]-Count[ dn, _?(Mod[#, 3]==2&)]]; dn12/@Range[120] (* Harvey P. Dale, Apr 26 2011 *)
a[ n_] := If[ n < 1, 0, DivisorSum[ n, KroneckerSymbol[ -3, #] &]]; (* Michael Somos, Aug 24 2014 *)
Table[DirichletConvolve[DirichletCharacter[3, 2, m], 1, m, n], {n, 1, 30}] (* Steven Foster Clark, May 29 2019 *)
f[3, p_] := 1; f[p_, e_] := If[Mod[p, 3] == 1, e+1, (1+(-1)^e)/2]; a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 100] (* Amiram Eldar, Sep 17 2020 *)
PROG
(PARI) {a(n) = if( n<0, 0, polcoeff( sum(k=1, n, x^k / (1 + x^k + x^(2*k)), x * O(x^n)), n))}; \\ Michael Somos
(PARI) {a(n) = if( n<1, 0, sumdiv(n, d, (d%3==1) - (d%3==2)))};
(PARI) {a(n) = local(A, p, e); if( n<1, 0, A = factor(n); prod(k=1, matsize(A)[1], if( p=A[k, 1], e=A[k, 2]; if( p==3, 1, if( p%3==1, e+1, !(e%2))))))}; \\ Michael Somos, May 20 2005
(PARI) {a(n) = if( n<1, 0, qfrep([2, 1; 1, 2], n, 1)[n] / 3)}; \\ Michael Somos, Jun 05 2005
(PARI) {a(n) = if( n<1, 0, direuler(p=2, n, 1 / (1 - X) / (1 - kronecker(-3, p)*X))[n])}; \\ Michael Somos, Jun 05 2005
(PARI) my(B=bnfinit(x^2+x+1)); vector(100, n, #bnfisintnorm(B, n)) \\ Joerg Arndt, Jun 01 2024
(Haskell)
a002324 n = a001817 n - a001822 n -- Reinhard Zumkeller, Nov 26 2011
(Python)
from math import prod
from sympy import factorint
def A002324(n): return prod(e+1 if p%3==1 else int(not e&1) for p, e in factorint(n).items() if p != 3) # Chai Wah Wu, Nov 17 2022
CROSSREFS
Dedekind zeta functions for imaginary quadratic number fields of discriminants -3, -4, -7, -8, -11, -15, -19, -20 are A002324, A002654, A035182, A002325, A035179, A035175, A035171, A035170, respectively.
Dedekind zeta functions for real quadratic number fields of discriminants 5, 8, 12, 13, 17, 21, 24, 28, 29, 33, 37, 40 are A035187, A035185, A035194, A035195, A035199, A035203, A035188, A035210, A035211, A035215, A035219, A035192, respectively.
KEYWORD
easy,nonn,nice,mult,changed
EXTENSIONS
More terms from David Radcliffe
Somos D.g.f. replaced with correct version by Ralf Stephan, Mar 27 2015
STATUS
approved
Numbers n such that genus of group Gamma_0(n) is zero.
+10
22
1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 12, 13, 16, 18, 25
OFFSET
1,2
COMMENTS
Equivalently, numbers n such that genus of modular curve X_0(n) is zero.
REFERENCES
G. Shimura, Introduction to the Arithmetic Theory of Automorphic Functions, Princeton, 1971, see Prop. 1.40 and 1.43.
LINKS
Miranda C. N. Cheng, John F. R. Duncan and Jeffrey A Harvey, Umbral moonshine and the Niemeier lattices, Research in the Mathematical Sciences, 2014, 1:3; See Eq. (22). - N. J. A. Sloane, Jun 19 2014
K. Harada, "Moonshine" of Finite Groups, European Math. Soc., 2010, p. 15.
Yang-Hui He, John McKay, Sporadic and Exceptional, arXiv:1505.06742 [math.AG], 2015.
Robert S. Maier, On Rationally Parametrized Modular Equations, arXiv:math/0611041 [math.NT], 2006.
K. Ono, The Web of Modularity: Arithmetic of the Coefficients of Modular Forms and q-Series, CBMS Regional Conference Series in Mathematics, vol. 102, American Mathematical Society, Providence, RI, 2004. See p. 110.
B. Schoeneberg, Elliptic Modular Functions, Springer-Verlag, NY, 1974, p. 103.
FORMULA
Numbers n such that A001617(n) = 0.
MATHEMATICA
Flatten@ Position[#, 0] &@ Table[If[n < 1, 0, 1 + Sum[MoebiusMu[d]^2 n/d/12 - EulerPhi[GCD[d, n/d]]/2, {d, Divisors@ n}] - Count[(#^2 - # + 1)/n & /@ Range@ n, _?IntegerQ]/3 - Count[(#^2 + 1)/n & /@ Range@ n, _?IntegerQ]/4], {n, 120}] (* Michael De Vlieger, Dec 05 2016, after Michael Somos at A001617 *)
CROSSREFS
The table below is a consequence of Theorem 7.3 in Maier's paper.
N EntryID K alpha
1
2 A127776 4096 1
3 A276018 729 1
4 A002894 256 1
5 A276019 125 4
6 A093388 72 1
7 A276021 49 9
8 A081085 32 1
9 A006077 27 1
10 A276020 20 2
12 A276022 12 1
13 A276177 13 36
16 A276178 8 1
18 A276179 6 1
25 A276180 5 4
KEYWORD
nonn,fini,full
AUTHOR
N. J. A. Sloane, Mar 02 2004
STATUS
approved
Genus of modular group Gamma_0(n). Or, genus of modular curve X_0(n).
(Formerly M0188 N0069)
+10
20
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 1, 1, 0, 1, 0, 1, 1, 1, 2, 2, 1, 0, 2, 1, 2, 2, 3, 2, 1, 3, 3, 3, 1, 2, 4, 3, 3, 3, 5, 3, 4, 3, 5, 4, 3, 1, 2, 5, 5, 4, 4, 5, 5, 5, 6, 5, 7, 4, 7, 5, 3, 5, 9, 5, 7, 7, 9, 6, 5, 5, 8, 5, 8, 7, 11, 6, 7, 4, 9, 7, 11, 7, 10, 9, 9, 7, 11, 7, 10, 9, 11, 9, 9, 7, 7, 9, 7, 8, 15
OFFSET
1,22
COMMENTS
Also the dimension of the space of cusp forms of weight two and level n. - Gene Ward Smith, May 23 2006
REFERENCES
B. Schoeneberg, Elliptic Modular Functions, Springer-Verlag, NY, 1974, p. 103.
N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
LINKS
Gheorghe Coserea, Table of n, a(n) for n = 1..50000 (first 1000 terms from N. J. A. Sloane)
J. A. Csirik, M. Zieve, and J. Wetherell, On the genera of X0(N), arXiv:math/0006096 [math.NT], 2000.
Harriet Fell, Morris Newman, and Edward Ordman, Tables of genera of groups of linear fractional transformations, J. Res. Nat. Bur. Standards Sect. B 67B 1963 61-68.
Steven R. Finch, Modular forms on SL_2(Z), December 28, 2005. [Cached copy, with permission of the author]
Ralf Hemmecke, Peter Paule, and Silviu Radu, Construction of Modular Function Bases for Gamma_0(121) related to p*(11*n + 6), (2019).
Nicolas Allen Smoot, Computer algebra with the fifth operation: applications of modular functions to partition congruences, Ph. D. Thesis, Johannes Kepler Univ., Linz (Austria 2022), 33.
FORMULA
a(n) = 1 + A001615(n)/12 - A000089(n)/4 - A000086(n)/3 - A001616(n)/2.
From Gheorghe Coserea, May 20 2016: (Start)
limsup a(n) / (n*log(log(n))) = exp(Euler)/(2*Pi^2), where Euler is A001620.
a(n) >= (n-5*sqrt(n)-8)/12, with equality iff n = p^2 for prime p=1 (mod 12) (see A068228).
a(n) < n * exp(Euler)/(2*Pi^2) * (log(log(n)) + 2/log(log(n))) for n>=3 (see Csirik link).
(End)
EXAMPLE
G.f. = x^11 + x^14 + x^15 + x^17 + x^19 + x^20 + x^21 + 2*x^22 + 2*x^23 + ...
MAPLE
nu2 := proc (n) # number of elliptic points of order two (A000089) local i, s; if modp(n, 4) = 0 then RETURN(0) fi; s := 1; for i in divisors(n) do if isprime(i) and i > 2 then s := s*(1+eval(legendre(-1, i))) fi od; s end:
nu3 := proc (n) # number of elliptic points of order three (A000086) local d, s; if modp(n, 9) = 0 then RETURN(0) fi; s := 1; for d in divisors(n) do if isprime(d) then s := s*(1+eval(legendre(-3, d))) fi od; s end:
nupara := proc (n) # number of parabolic cusps (A001616) local b, d; b := 0; for d to n do if modp(n, d) = 0 then b := b+eval(phi(gcd(d, n/d))) fi od; b end:
A001615 := proc(n) local i, j; j := n; for i in divisors(n) do if isprime(i) then j := j*(1+1/i); fi; od; j; end;
genx := proc (n) # genus of X0(n) (A001617) #1+1/12*psi(n)-1/4*nu2(n)-1/3*nu3(n)-1/2*nupara(n) end: 1+1/12*A001615(n)-1/4*nu2(n)-1/3*nu3(n)-1/2*nupara(n) end: # Gene Ward Smith, May 23 2006
MATHEMATICA
nu2[n_] := Module[{i, s}, If[Mod[n, 4] == 0, Return[0]]; s = 1; Do[ If[ PrimeQ[i] && i > 2, s = s*(1 + JacobiSymbol[-1, i])], {i, Divisors[n]}]; s];
nu3[n_] := Module[{d, s}, If[Mod[n, 9] == 0, Return[0]]; s = 1; Do[ If[ PrimeQ[d], s = s*(1 + JacobiSymbol[-3, d])], {d, Divisors[n]}]; s];
nupara[n_] := Module[{b, d}, b = 0; For[d = 1, d <= n, d++, If[ Mod[n, d] == 0, b = b + EulerPhi[ GCD[d, n/d]]]]; b];
A001615[n_] := Module[{i, j}, j = n; Do[ If[ PrimeQ[i], j = j*(1 + 1/i)], {i, Divisors[n]}]; j];
genx[n_] := 1 + (1/12)*A001615[n] - (1/4)*nu2[n] - (1/3)*nu3[n] - (1/2)*nupara[n];
A001617 = Table[ genx[n], {n, 1, 102}] (* Jean-François Alcover, Jan 04 2012, after Gene Ward Smith's Maple program *)
a[ n_] := If[ n < 1, 0, 1 + Sum[ MoebiusMu[ d]^2 n/d / 12 - EulerPhi[ GCD[ d, n/d]] / 2, {d, Divisors @n}] - Count[(#^2 - # + 1)/n & /@ Range[n], _?IntegerQ]/3 - Count[ (#^2 + 1)/n & /@ Range[n], _?IntegerQ]/4]; (* Michael Somos, May 08 2015 *)
PROG
(Magma) a := func< n | n lt 1 select 0 else Dimension( CuspForms( Gamma0(n), 2))>; /* Michael Somos, May 08 2015 */
(PARI)
A000089(n) = {
if (n%4 == 0 || n%4 == 3, return(0));
if (n%2 == 0, n \= 2);
my(f = factor(n), fsz = matsize(f)[1]);
prod(k = 1, fsz, if (f[k, 1] % 4 == 3, 0, 2));
};
A000086(n) = {
if (n%9 == 0 || n%3 == 2, return(0));
if (n%3 == 0, n \= 3);
my(f = factor(n), fsz = matsize(f)[1]);
prod(k = 1, fsz, if (f[k, 1] % 3 == 2, 0, 2));
};
A001615(n) = {
my(f = factor(n), fsz = matsize(f)[1],
g = prod(k=1, fsz, (f[k, 1]+1)),
h = prod(k=1, fsz, f[k, 1]));
return((n*g)\h);
};
A001616(n) = {
my(f = factor(n), fsz = matsize(f)[1]);
prod(k = 1, fsz, f[k, 1]^(f[k, 2]\2) + f[k, 1]^((f[k, 2]-1)\2));
};
a(n) = 1 + A001615(n)/12 - A000089(n)/4 - A000086(n)/3 - A001616(n)/2;
vector(102, n, a(n)) \\ Gheorghe Coserea, May 20 2016
KEYWORD
nonn,easy,nice
STATUS
approved
Numbers that are primitively represented by x^2 + xy + y^2.
+10
17
0, 1, 3, 7, 13, 19, 21, 31, 37, 39, 43, 49, 57, 61, 67, 73, 79, 91, 93, 97, 103, 109, 111, 127, 129, 133, 139, 147, 151, 157, 163, 169, 181, 183, 193, 199, 201, 211, 217, 219, 223, 229, 237, 241, 247, 259, 271, 273, 277, 283, 291, 301, 307, 309, 313, 327, 331
OFFSET
1,3
COMMENTS
Gives the location of the nonzero terms of A000086.
Starting at a(3), a(n)^2 is the ordered semiperimeter of primitive integer Soddyian triangles (see A210484). - Frank M Jackson, Feb 04 2013
A000086(a(n)) > 0; a(n) = A004611(k) or a(n) = 3*A004611(k) for n > 3 and an appropriate k. - Reinhard Zumkeller, Jun 23 2013
The number of structure units in an icosahedral virus is 20*a(n), see Stannard link. - Charles R Greathouse IV, Nov 03 2015
From Wolfdieter Lang, Apr 09 2021: (Start)
The positive definite binary quadratic form F = [1, 1, 1], that is x^2 + x*y + y^2, has discriminant Disc = -3, and class number 1 (see Buell, Examples, p. 19, first line: Delta = -3, h = 1). This reduced form is equivalent to the form [1,-1, 1], but to no other reduced one (see Buell, Theorem 2.4, p. 15).
This form F represents a positive integer k (= a(n)) properly if and only if A002061(j+1) = 2*T(j) + 1 = j^2 + j + 1 == 0 (mod k), for j from {0, 1, ..., k-1}. This congruence determines the representative parallel primitive forms (rpapfs) of discriminant Disc = -3 and representation of a positive integer number k, given by [k, 2*j+1, c(j)], and c(j) is determined from Disc =-3 as c(j) = ((2*j+1)^2 + 3)/(4*k) = (j^2 + j + 1)/k. Each rpapf has a first reduced form, the so-called right neighbor form, namely [1, 1, 1] for k = 1 = a(1) (the already reduced parallel form from j = 0), and [1, -1, 1] for k = a(n), with n >= 2.
Only odd numbers k are eligible for representation, because 2*T(j) + 1, with the triangular numbers T = A000217, is odd. The odd k with at least one solution of the congruence are then the members of the present sequence.
The solutions of the reduced forms F = [1, 1, 1] and F' = [1, -1, 1] representing k are related by type I equivalence because of the first two entries ([a, a, c] == [a, -a, c]), and also by type II equivalence because [a, b, a] == [a, -b, a], for positive b. These transformation matrices are R_I = Matrix([1, -1],[0, 1]) and R_{II} = Matrix([0, -1], [1, 0]), respectively, to obtain the forms with negative second entry from the ones with positive second entry. The corresponding solutions (x, y)^t (t for transposed) are related by the inverse of these matrices.
The table with the A341422(n) solutions j of the congruence given above are given in A343232. (End)
Apparently, also the integers k that can be expressed as a quotient of two terms from A002061. - Martin Becker, Aug 14 2022
For some x, y let a(n) = r, x*(x+y) = s, y*(x+y) = t, x*y = u then (r,s,t,u) is a Pythagorean quadruple such that r^2 = s^2 + t^2 + u^2. - Frank M Jackson, Feb 26 2024
REFERENCES
B. C. Berndt and R. A. Rankin, Ramanujan: Letters and Commentary, see p. 184, AMS, Providence, RI, 1995.
D. A. Buell, Binary Quadratic Forms, Springer, 1989, pp. 15, 19.
LINKS
N. J. A. Sloane et al., Binary Quadratic Forms and OEIS (Index to related sequences, programs, references)
Linda Stannard, Principles of Virus Architecture (1995).
FORMULA
n >= 2: 3^{0 or 1} X product of primes of form 3a+1 (A002476) to any nonnegative power.
The sequence {a(n)}_{n>=2} gives the increasingly sorted positive numbers k such that the set M(k) := {j = 0, 1, 2, ..., k-1 | j^2 + j + 1 == 0 (mod k)}, has cardinality >= 1. - Wolfdieter Lang, Apr 09 2021
MAPLE
N:= 1000: # to get all terms <= N
P:= select(isprime, [seq(6*n+1, n=1..floor((N-1)/6))]):
A:= {1, 3}:
for p in P do
A:= {seq(seq(a*p^k, k=0..floor(log[p](N/a))), a=A)}:
od:
sort(convert(A, list)); # Robert Israel, Nov 04 2015
MATHEMATICA
lst = {0}; maxLen = 331; Do[If[Reduce[m^2 + m*n + n^2 == k && m >= n >= 0 && GCD[m, n] == 1, {m, n}, Integers] === False, , AppendTo[lst, k]], {k, maxLen}]; lst (* Frank M Jackson, Jan 10 2013 *) (* simplified by T. D. Noe, Feb 05 2013 *)
PROG
(PARI) is(n)=my(f=factor(n)); for(i=1, #f[, 1], if(f[i, 1]%3!=1 && (f[i, 1]!=3 || f[i, 2]>1), return(n==0))); 1 \\ Charles R Greathouse IV, Jan 10 2013
(PARI) list(lim)=if(lim<7, return(select(n->n<=lim, [0, 1, 3]))); my(v=List([0, 1, 3])); for(x=1, sqrtint(lim\=1), my(y, t); while(y++<x && (t=x^2+x*y+y^2)<=lim, gcd(x, y)==1 && listput(v, t))); Set(v) \\ Charles R Greathouse IV, Jan 20 2022
(Haskell)
a034017 n = a034017_list !! (n-1)
a034017_list = 0 : filter ((> 0) . a000086) [1..]
-- Reinhard Zumkeller, Jun 23 2013
CROSSREFS
Cf. A000217, A002061, A002476, A003136, A007645 (primes), A045611, A045897, A226946 (complement), A045897 (subsequence), A341422, A343232.
KEYWORD
nonn,easy
EXTENSIONS
Extended by Ray Chandler, Jan 29 2009
STATUS
approved
Number of primitive inequivalent mirror-symmetric sublattices of rectangular lattice of index n.
+10
13
1, 3, 2, 4, 2, 6, 2, 4, 2, 6, 2, 8, 2, 6, 4, 4, 2, 6, 2, 8, 4, 6, 2, 8, 2, 6, 2, 8, 2, 12, 2, 4, 4, 6, 4, 8, 2, 6, 4, 8, 2, 12, 2, 8, 4, 6, 2, 8, 2, 6, 4, 8, 2, 6, 4, 8, 4, 6, 2, 16, 2, 6, 4, 4, 4, 12, 2, 8, 4, 12, 2, 8, 2, 6, 4, 8, 4, 12, 2, 8, 2, 6, 2, 16, 4
OFFSET
1,2
LINKS
John S. Rutherford, Sublattice enumeration. IV. Equivalence classes of plane sublattices by parent Patterson symmetry and colour lattice group type, Acta Cryst. (2009). A65, 156-163. [See Table 4. Contains errors for n = 24 and 28.]
FORMULA
From Álvar Ibeas, Mar 18 2021: (Start)
For n odd, a(n) = A034444(n) = 2^(A001221(n)).
For n even, a(n) = A034444(n) + A034444(n/2). If 4|n, a(n) = 2^(A001221(n) + 1); otherwise, a(n) = 3 * 2^(A001221(n) - 1).
Multiplicative with a(2) = 3, a(2^e) = 4 (for e>1), and a(p^e) = 2 (for p>2).
Dirichlet g.f.: (1+2^(-s)) * zeta(s)^2 / zeta(2s).
(End)
Sum_{k=1..n} a(k) ~ (log(n) + 2*gamma - log(2)/3 - 2*zeta'(2)/zeta(2) - 1)*9*n/Pi^2, where gamma is Euler's constant (A001620). - Amiram Eldar, Dec 31 2022
EXAMPLE
There are 6 = A001615(4) lattices in Z^2 whose quotient group is C_4. The reflection through an axis relates <(4,0), (1,1)> and <(4,0), (3,1)>. The remaining 4 = a(4) lattices are fixed.
MATHEMATICA
f[p_, e_] := If[p == 2, If[e == 1, 3, 4], 2]; a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 100] (* Amiram Eldar, Oct 22 2022 *)
CROSSREFS
Cf. A069735 (not only primitive sublattices), A304183 (primitive oblique sublattices), A069734 (all sublattices).
Cf. other columns of tables 4 and 5 from [Rutherford, 2009]: A001615, A060594, A157223, A000089, A157224, A000086, A157227, A019590, A157228, A157226, A157230, A157231, A154272, A157235.
KEYWORD
nonn,mult
AUTHOR
Andrey Zabolotskiy, May 07 2018
STATUS
approved
a(n) = Product_{ p | n } (1 + Legendre(-1,p) ).
+10
10
1, 2, 0, 2, 2, 0, 0, 2, 0, 4, 0, 0, 2, 0, 0, 2, 2, 0, 0, 4, 0, 0, 0, 0, 2, 4, 0, 0, 2, 0, 0, 2, 0, 4, 0, 0, 2, 0, 0, 4, 2, 0, 0, 0, 0, 0, 0, 0, 0, 4, 0, 4, 2, 0, 0, 0, 0, 4, 0, 0, 2, 0, 0, 2, 4, 0, 0, 4, 0, 0, 0, 0, 2, 4, 0, 0, 0, 0, 0, 4, 0, 4, 0, 0, 4, 0, 0, 0, 2, 0, 0, 0, 0, 0, 0, 0, 2, 0, 0, 4, 2, 0, 0, 4, 0
OFFSET
1,2
REFERENCES
Goro Shimura, Introduction to the Arithmetic Theory of Automorphic Functions, Princeton, 1971, see p. 25, Eq. (2) (but without the restriction that a(4k) = 0 and with a different definition of Legendre(-1,2)).
LINKS
FORMULA
Here we use the definition that Legendre(-1, 2) = 1, Legendre(-1, p) = 1 if p == 1 mod 4, = -1 if p == 3 mod 4.
From Amiram Eldar, Oct 11 2022: (Start)
Multiplicative with a(p^e) = 0 if p == 3 (mod 4) and 2 otherwise.
Asymptotic mean: Limit_{m->oo} (1/m) * Sum_{k=1..m} a(k) = 3/Pi = 0.954929... (A089491). (End)
MAPLE
with(numtheory); A091379 := proc(n) local i, t1, t2; t1 := ifactors(n)[2]; t2 := mul((1+legendre(-1, t1[i][1])), i=1..nops(t1)); end;
MATHEMATICA
a[n_] := Module[{t1, t2}, t1 = FactorInteger[n]; t2 = Product[(1 + KroneckerSymbol[-1, t1[[i, 1]]]), {i, 1, Length[t1]}]]; a[1] = 1;
Array[a, 105] (* Jean-François Alcover, Feb 08 2022, from Maple code *)
PROG
(PARI)
vecproduct(v) = { my(m=1); for(i=1, #v, m *= v[i]); m; };
A091379(n) = vecproduct(apply(p -> (1 + kronecker(-1, p)), factorint(n)[, 1])); \\ Antti Karttunen, Nov 18 2017
KEYWORD
nonn,mult
AUTHOR
N. J. A. Sloane, Mar 02 2004
STATUS
approved
Number of inequivalent sublattices of index n in hexagonal lattice, where two sublattices are considered equivalent if one can be rotated by a multiple of Pi/3 to give the other.
+10
10
1, 1, 2, 3, 2, 4, 4, 5, 5, 6, 4, 10, 6, 8, 8, 11, 6, 13, 8, 14, 12, 12, 8, 20, 11, 14, 14, 20, 10, 24, 12, 21, 16, 18, 16, 31, 14, 20, 20, 30, 14, 32, 16, 28, 26, 24, 16, 42, 21, 31, 24, 34, 18, 40, 24, 40, 28, 30, 20, 56, 22, 32, 36, 43, 28, 48, 24, 42, 32, 48, 24, 65, 26, 38, 42, 48, 32, 56, 28, 62
OFFSET
1,3
COMMENTS
Also, apparently a(n) is the number of nonequivalent (up to lattice-preserving affine transformation) triangles on 2D square lattice of area n/2 [Karpenkov]. - Andrey Zabolotskiy, Jul 06 2017
From Andrey Zabolotskiy, Jan 18 2018: (Start)
The parent lattice of the sublattices under consideration has Patterson symmetry group p6, and two sublattices are considered equivalent if they are related via a symmetry from that group [Rutherford]. For other 2D Patterson groups, the analogous sequences are A000203 (p2), A069734 (p2mm), A145391 (c2mm), A145392 (p4), A145393 (p4mm), A003051 (p6mm).
If we count sublattices related by parent-lattice-preserving reflection as equivalent, we get A003051 instead of this sequence. If we count sublattices related by rotation of the sublattice only (but not parent lattice; equivalently, sublattices related by rotation by angle which is not a multiple of Pi/3; see illustration in links) as equivalent, we get A054384. If we count sublattices related by any rotation or reflection as equivalent, we get A300651.
Rutherford says at p. 161 that a(n) != A054384(n) only when A002324(n) > 1, but actually these two sequences differ at other terms, too, for example, at n = 14 (see illustration). (End)
LINKS
Oleg Karpenkov, Elementary notions of lattice trigonometry, Mathematica Scandinavica, vol.102, no.2, pp.161-205, (2008) [See page 203].
Oleg Karpenkov, Geometry of Lattice Angles, Polygons, and Cones, Thesis, Technische Universität Graz, 2009.
Christian Kassel and Christophe Reutenauer, The zeta function of the Hilbert scheme of n points on a two-dimensional torus, arXiv:1505.07229v3 [math.AG], 2015. [Note that a later version of this paper has a different title and different contents, and the number-theoretical part of the paper was moved to the publication which is next in this list.]
Christian Kassel and Christophe Reutenauer, Complete determination of the zeta function of the Hilbert scheme of n points on a two-dimensional torus, arXiv:1610.07793 [math.NT], 2016.
Andrey Zabolotskiy, Sublattices of the hexagonal lattice (illustrations for n = 1..7, 14)
Andrey Zabolotskiy, Coweight lattice A^*_n and lattice simplices, arXiv:2003.10251 [math.CO], 2020.
FORMULA
a(n) = (A000203(n) + 2 * A002324(n))/3. [Rutherford] - N. J. A. Sloane, Mar 13 2009
a(n) = Sum_{ m: m^2|n } A000086(n/m^2) + A157227(n/m^2) = A002324(n) + Sum_{ m: m^2|n } A157227(n/m^2). [Rutherford] - Andrey Zabolotskiy, Apr 23 2018
a(n) = Sum_{ d|n } A008611(d-1). - Andrey Zabolotskiy, Aug 29 2019
MATHEMATICA
a[n_] := (DivisorSigma[1, n] + 2 DivisorSum[n, Switch[Mod[#, 3], 1, 1, 2, -1, 0, 0] &])/3; Array[a, 80] (* Jean-François Alcover, Dec 03 2015 *)
PROG
(PARI)
A002324(n) = if( n<1, 0, sumdiv(n, d, (d%3==1) - (d%3==2)));
A000203(n) = if( n<1, 0, sigma(n));
a(n) = (A000203(n) + 2 * A002324(n)) / 3;
\\ Joerg Arndt, Oct 13 2013
KEYWORD
nonn
AUTHOR
N. J. A. Sloane, Feb 23 2009
EXTENSIONS
New name from Andrey Zabolotskiy, Dec 14 2017
STATUS
approved
Genus of the quotient of the modular curve X_0(n) by the Fricke involution.
+10
6
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 1, 0, 0, 1, 1, 0, 0, 1, 1, 0, 1, 0, 2, 1, 1, 1, 2, 0, 1, 0, 0, 1, 2, 1, 1, 1, 1, 2, 3, 0, 3, 1, 2, 1, 1, 1, 3, 2, 2, 2, 4, 0, 2, 2, 2, 1, 3, 2, 5, 1, 2, 1, 4, 1, 4, 3, 3, 2, 4, 1, 4, 2, 4, 4, 4, 1, 3, 3, 2, 3, 3, 1, 7
OFFSET
1,42
COMMENTS
a(n) is the genus of quotient space H/Gamma_0*(n), where H is the upper half plane and Gamma_0*(n) = Gamma_0(n) + W Gamma_0(n) is the extension of Gamma_0(n) via the involution z <-> W(z) = -n/z (see Cohn, 1988).
LINKS
Harvey Cohn, Fricke's Two-Valued Modular Equations, Math. Comp. 51 (1988), 787-807.
Harvey Cohn, A Numerical Survey of the Reduction of Modular Curve Genus by Fricke's Involutions, Number Theory (New York Seminar 1989-1990), p. 100.
Fell, Harriet; Newman, Morris; Ordman, Edward; Tables of genera of groups of linear fractional transformations, J. Res. Nat. Bur. Standards Sect. B 67B 1963 61-68.
Andrew P. Ogg, Automorphismes de courbes modulaires, Séminaire Delange-Pisot-Poitou. Théorie des nombres, vol. 16, no. 1 (1974-1975), talk no. 7, p. 1.
FORMULA
a(n) = (1 + A001617(n))/2 - r * A000003(n)/12 for all n > 4, where r=4 for n=3 (mod 8), r=6 for n=7 (mod 8) and r=3 otherwise.
a(n) <> 4884 for all n.
EXAMPLE
G.f. = x^22 + x^28 + x^30 + x^33 + x^34 + x^37 + x^38 + x^40 + 2*x^42 + x^43 + x^44 + ...
MATHEMATICA
f[n_] := If[n < 1, 0, 1 + Sum[MoebiusMu[d]^2 n/d/12 - EulerPhi[GCD[d, n/d]]/2, {d, Divisors@ n}] - Count[(#^2 - # + 1)/n & /@ Range@ n, _?IntegerQ]/3 - Count[(#^2 + 1)/n & /@ Range@ n, _?IntegerQ]/4];
g[n_] := Ceiling[k0 = k /. FindRoot[EllipticK[1 - k^2]/EllipticK[k^2] == Sqrt@ n, {k, 1/2, 10^-10, 1}, WorkingPrecision -> 600, MaxIterations -> 100]; Exponent[MinimalPolynomial[RootApproximant[k0^2, 24], x], x]/2];
r[n_] := If[MemberQ[{3, 7}, #], 3 + (# - 1)/2, 3] &@ Mod[n, 8]; a[n_] := If[n <= 4, 0, (1 + f@ n)/2 - r[n] g[n]/12]; Table[Print["a(", n, ") = ", an = a[n]]; an, {n, 102}] (* Michael De Vlieger, Oct 28 2016, after Michael Somos at A001617 and Jean-François Alcover at A000003 *)
ClassList[n_?Negative] :=
Select[Flatten[#, 1] &@Table[
{i, j, (j^2 - n)/(4 i)}, {i, Sqrt[-n/3]}, {j, 1 - i, i}],
Mod[#3, 1] == 0 && #3 >= # &&
GCD[##] == 1 && ! (# == #3 && #2 < 0) & @@ # &]
A001617[n_] := If[n < 1, 0,
1 + Sum[MoebiusMu[d]^2 n/d/12 - EulerPhi[GCD[d, n/d]]/2, {d,
Divisors@n}] -
Count[(#^2 - # + 1)/n & /@ Range[n], _?IntegerQ]/3 -
Count[(#^2 + 1)/n & /@ Range[n], _?IntegerQ]/4];
a[n_] := If[0 <= n <= 4, 0, (A001617[n] + 1)/2 - If[Mod[n, 8] == 3, 4, If[Mod[n, 8] == 7, 6, 3]] Length[ClassList[-4 n]]/12] (* David Jao, Sep 07 2020 *)
PROG
(PARI)
A000003(n) = qfbclassno(-4*n);
A000089(n) = {
if (n%4 == 0 || n%4 == 3, return(0));
if (n%2 == 0, n \= 2);
my(f = factor(n), fsz = matsize(f)[1]);
prod(k = 1, fsz, if (f[k, 1] % 4 == 3, 0, 2));
};
A000086(n) = {
if (n%9 == 0 || n%3 == 2, return(0));
if (n%3 == 0, n \= 3);
my(f = factor(n), fsz = matsize(f)[1]);
prod(k = 1, fsz, if (f[k, 1] % 3 == 2, 0, 2));
};
A001615(n) = {
my(f = factor(n), fsz = matsize(f)[1],
g = prod(k=1, fsz, (f[k, 1]+1)),
h = prod(k=1, fsz, f[k, 1]));
return((n*g)\h);
};
A001616(n) = {
my(f = factor(n), fsz = matsize(f)[1]);
prod(k = 1, fsz, f[k, 1]^(f[k, 2]\2) + f[k, 1]^((f[k, 2]-1)\2));
};
A001617(n) = 1 + A001615(n)/12 - A000089(n)/4 - A000086(n)/3 - A001616(n)/2;
a(n) = {
my(r = if (n%8 == 3, 4, n%8 == 7, 6, 3));
if (n < 5, 0, (1 + A001617(n))/2 - r * A000003(n)/12);
};
vector(102, n, a(n))
KEYWORD
nonn
AUTHOR
Gheorghe Coserea, Oct 21 2016
EXTENSIONS
New name from David Jao, Sep 07 2020
STATUS
approved
Numbers n such that OEIS sequence A_n contains n.
+10
5
1, 2, 3, 5, 6, 8, 10, 14, 16, 19, 26, 27, 36, 37, 52, 59, 62, 69, 72, 115, 119, 120, 121, 134, 161, 164, 174, 177, 188, 189, 190, 193, 194, 195, 196, 209, 224, 265, 267, 277
OFFSET
1,2
COMMENTS
A number n is in this sequence iff n appears anywhere in the terms of A_n, not just in the terms that are visible in the entry.
Is 53873 in this sequence? (A rhetorical question!) - Tanya Khovanova, Aug 09 2007
Is 53169 in this sequence? (A rhetorical question!). - Raymond Wang, Oct 07 2008
I skipped 241 since it appears that A000241(14) > 241, but as the 13th and further terms are not known this is not certain. The next term in the sequence is almost surely 319, but finding the least k for which A000319(k) = 319 requires calculating a chaotic sequence to high precision. - Charles R Greathouse IV, Jul 20 2007
241 is not in this sequence, since A000241(13) <= 225 and A000241(14) >= 0.8594*315 (see comments in A000241). - Danny Rorabaugh, Mar 13 2015
EXAMPLE
4 is not in A000004, so 4 is not in this sequence.
60 is not in A000060, so 60 is not in this sequence.
86 is not in A000086, so 86 is not in this sequence.
CROSSREFS
Complement of A053169.
KEYWORD
nonn,more,fini
AUTHOR
Jens Voß, Mar 30 2000
EXTENSIONS
More terms from N. J. A. Sloane, Aug 24 2006
a(23)-a(25) from Charles R Greathouse IV, Aug 30 2006
a(26)-a(40) from Charles R Greathouse IV, Jul 20 2007
Typo in one entry corrected by Olaf Voß, Feb 25 2008
STATUS
approved
Numbers n such that genus of modular curve X_0(N) is never equal to n.
+10
5
150, 180, 210, 286, 304, 312, 336, 338, 348, 350, 480, 536, 570, 598, 606, 620, 666, 678, 706, 730, 756, 780, 798, 850, 876, 896, 906, 916, 970, 1014, 1026, 1046, 1106, 1144, 1170, 1176, 1186, 1188, 1224, 1244, 1260, 1320, 1350, 1356, 1366
OFFSET
1,1
COMMENTS
"Looking further in the list of integers not of the form g0(N), we do eventually find some odd values, the first one occurring at the 3885th position. There are four such up to 10^5 (out of 9035 total missed values), namely 49267, 74135, 94091, 96463." (see Csirik link) - Gheorghe Coserea, May 21 2016.
a(1534734) = 9999996. - Gheorghe Coserea, May 23 2016
LINKS
J. A. Csirik, M. Zieve, and J. Wetherell, On the genera of X0(N), arXiv:math/0006096 [math.NT], 2000.
MATHEMATICA
a1617[n_] := a1617[n] = If[n < 1, 0, 1 + Sum[MoebiusMu[d]^2 n/d/12 - EulerPhi[GCD[d, n/d]]/2, {d, Divisors[n]}] - Count[(#^2 - # + 1)/n & /@ Range[n], _?IntegerQ]/3 - Count[(#^2+1)/n & /@ Range[n], _?IntegerQ]/4];
seq[n_] := Module[{inv, bnd}, inv[_] = -1; bnd = 12 n + 18 Floor[Sqrt[n]] + 100; For[k = 1, k <= bnd, k++, g = a1617[k]; If[g <= n && inv[g+1] == -1, inv[g+1] = k]]; (Position[Array[inv, n+1], -1] // Flatten)-1];
seq[1000] (* Jean-François Alcover, Nov 20 2018, after Gheorghe Coserea and Michael Somos in A001617 *)
PROG
(PARI)
A000089(n) = {
if (n%4 == 0 || n%4 == 3, return(0));
if (n%2 == 0, n \= 2);
my(f = factor(n), fsz = matsize(f)[1]);
prod(k = 1, fsz, if (f[k, 1] % 4 == 3, 0, 2));
};
A000086(n) = {
if (n%9 == 0 || n%3 == 2, return(0));
if (n%3 == 0, n \= 3);
my(f = factor(n), fsz = matsize(f)[1]);
prod(k = 1, fsz, if (f[k, 1] % 3 == 2, 0, 2));
};
A001615(n) = {
my(f = factor(n), fsz = matsize(f)[1],
g = prod(k=1, fsz, (f[k, 1]+1)),
h = prod(k=1, fsz, f[k, 1]));
return((n*g)\h);
};
A001616(n) = {
my(f = factor(n), fsz = matsize(f)[1]);
prod(k = 1, fsz, f[k, 1]^(f[k, 2]\2) + f[k, 1]^((f[k, 2]-1)\2));
};
A001617(n) = 1 + A001615(n)/12 - A000089(n)/4 - A000086(n)/3 - A001616(n)/2;
scan(n) = {
my(inv = vector(n+1, g, -1), bnd = 12*n + 18*sqrtint(n) + 100, g);
for (k = 1, bnd, g = A001617(k);
if (g <= n && inv[g+1] == -1, inv[g+1] = k));
apply(x->(x-1), Vec(select(x->x==-1, inv, 1)))
};
scan(1367) \\ Gheorghe Coserea, May 21 2016
CROSSREFS
KEYWORD
nonn
AUTHOR
Janos A. Csirik, Apr 21 2000
STATUS
approved

Search completed in 0.077 seconds