[go: up one dir, main page]

login
A035215
Coefficients in expansion of Dirichlet series Product_p (1-(Kronecker(m,p)+1)*p^(-s)+Kronecker(m,p)*p^(-2s))^(-1) for m = 33.
22
1, 2, 1, 3, 0, 2, 0, 4, 1, 0, 1, 3, 0, 0, 0, 5, 2, 2, 0, 0, 0, 2, 0, 4, 1, 0, 1, 0, 2, 0, 2, 6, 1, 4, 0, 3, 2, 0, 0, 0, 2, 0, 0, 3, 0, 0, 0, 5, 1, 2, 2, 0, 0, 2, 0, 0, 0, 4, 0, 0, 0, 4, 0, 7, 0, 2, 2, 6, 0, 0, 0, 4, 0, 4, 1, 0, 0, 0, 0, 0, 1
OFFSET
1,2
COMMENTS
Coefficients of Dedekind zeta function for the quadratic number field of discriminant 33. See A002324 for formula and Maple code. - N. J. A. Sloane, Mar 22 2022
LINKS
FORMULA
From Amiram Eldar, Nov 19 2023: (Start)
a(n) = Sum_{d|n} Kronecker(33, d).
Multiplicative with a(p^e) = 1 if Kronecker(33, p) = 0 (p = 3 or 11), a(p^e) = (1+(-1)^e)/2 if Kronecker(33, p) = -1 (p is in A038908), and a(p^e) = e+1 if Kronecker(33, p) = 1 (p is in A038907 \ {3, 11}).
Asymptotic mean: Limit_{m->oo} (1/m) * Sum_{k=1..m} a(k) = 2*log(4*sqrt(33)+23)/sqrt(33) = 1.332797188186... . (End)
MATHEMATICA
a[n_] := DivisorSum[n, KroneckerSymbol[33, #] &]; Array[a, 100] (* Amiram Eldar, Nov 19 2023 *)
PROG
(PARI) my(m = 33); direuler(p=2, 101, 1/(1-(kronecker(m, p)*(X-X^2))-X))
(PARI) a(n) = sumdiv(n, d, kronecker(33, d)); \\ Amiram Eldar, Nov 19 2023
CROSSREFS
Dedekind zeta functions for imaginary quadratic number fields of discriminants -3, -4, -7, -8, -11, -15, -19, -20 are A002324, A002654, A035182, A002325, A035179, A035175, A035171, A035170, respectively.
Dedekind zeta functions for real quadratic number fields of discriminants 5, 8, 12, 13, 17, 21, 24, 28, 29, 33, 37, 40 are A035187, A035185, A035194, A035195, A035199, A035203, A035188, A035210, A035211, A035215, A035219, A035192, respectively.
Sequence in context: A239631 A113288 A199580 * A147654 A373247 A321377
KEYWORD
nonn,easy,mult
STATUS
approved