[go: up one dir, main page]

login
A035214
2 followed by a run of n 1's.
5
2, 2, 1, 2, 1, 1, 2, 1, 1, 1, 2, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1
OFFSET
0,1
LINKS
Mohammad K. Azarian, Remarks and Conjectures Regarding Combinatorics of Discrete Partial Functions, Int'l Math. Forum (2022) Vol. 17, No. 3, 129-141. See Conjecture 4.5, p. 137.
FORMULA
a(n) = 2 if n is a triangular number, otherwise 1.
Equals A010054(n) + 1.
a(n) = floor((3-cos(Pi*sqrt(8*n+1)))/2). - Carl R. White, Mar 18 2006
MATHEMATICA
Table[(SquaresR[1, 8*n + 1] + 2)/2, {n, 0, 100}] (* or *) Table[Floor[(3 - Cos[Pi*Sqrt[8*n + 1]])/2], {n, 0, 100}] (* G. C. Greubel, May 14 2017 *)
PROG
(PARI) for(n=0, 100, print1(floor((3-cos(Pi*sqrt(8*n+1)))/2), ", ")) \\ G. C. Greubel, May 14 2017
(PARI) a(n) = issquare(n<<3 + 1) + 1; \\ Kevin Ryde, Aug 03 2022
CROSSREFS
KEYWORD
nonn,easy
EXTENSIONS
Typo corrected by Neven Juric, Jan 10 2009
STATUS
approved