[go: up one dir, main page]

login
A276183
Genus of the quotient of the modular curve X_0(n) by the Fricke involution.
6
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 1, 0, 0, 1, 1, 0, 0, 1, 1, 0, 1, 0, 2, 1, 1, 1, 2, 0, 1, 0, 0, 1, 2, 1, 1, 1, 1, 2, 3, 0, 3, 1, 2, 1, 1, 1, 3, 2, 2, 2, 4, 0, 2, 2, 2, 1, 3, 2, 5, 1, 2, 1, 4, 1, 4, 3, 3, 2, 4, 1, 4, 2, 4, 4, 4, 1, 3, 3, 2, 3, 3, 1, 7
OFFSET
1,42
COMMENTS
a(n) is the genus of quotient space H/Gamma_0*(n), where H is the upper half plane and Gamma_0*(n) = Gamma_0(n) + W Gamma_0(n) is the extension of Gamma_0(n) via the involution z <-> W(z) = -n/z (see Cohn, 1988).
LINKS
Harvey Cohn, Fricke's Two-Valued Modular Equations, Math. Comp. 51 (1988), 787-807.
Harvey Cohn, A Numerical Survey of the Reduction of Modular Curve Genus by Fricke's Involutions, Number Theory (New York Seminar 1989-1990), p. 100.
Fell, Harriet; Newman, Morris; Ordman, Edward; Tables of genera of groups of linear fractional transformations, J. Res. Nat. Bur. Standards Sect. B 67B 1963 61-68.
Andrew P. Ogg, Automorphismes de courbes modulaires, Séminaire Delange-Pisot-Poitou. Théorie des nombres, vol. 16, no. 1 (1974-1975), talk no. 7, p. 1.
FORMULA
a(n) = (1 + A001617(n))/2 - r * A000003(n)/12 for all n > 4, where r=4 for n=3 (mod 8), r=6 for n=7 (mod 8) and r=3 otherwise.
a(n) <> 4884 for all n.
EXAMPLE
G.f. = x^22 + x^28 + x^30 + x^33 + x^34 + x^37 + x^38 + x^40 + 2*x^42 + x^43 + x^44 + ...
MATHEMATICA
f[n_] := If[n < 1, 0, 1 + Sum[MoebiusMu[d]^2 n/d/12 - EulerPhi[GCD[d, n/d]]/2, {d, Divisors@ n}] - Count[(#^2 - # + 1)/n & /@ Range@ n, _?IntegerQ]/3 - Count[(#^2 + 1)/n & /@ Range@ n, _?IntegerQ]/4];
g[n_] := Ceiling[k0 = k /. FindRoot[EllipticK[1 - k^2]/EllipticK[k^2] == Sqrt@ n, {k, 1/2, 10^-10, 1}, WorkingPrecision -> 600, MaxIterations -> 100]; Exponent[MinimalPolynomial[RootApproximant[k0^2, 24], x], x]/2];
r[n_] := If[MemberQ[{3, 7}, #], 3 + (# - 1)/2, 3] &@ Mod[n, 8]; a[n_] := If[n <= 4, 0, (1 + f@ n)/2 - r[n] g[n]/12]; Table[Print["a(", n, ") = ", an = a[n]]; an, {n, 102}] (* Michael De Vlieger, Oct 28 2016, after Michael Somos at A001617 and Jean-François Alcover at A000003 *)
ClassList[n_?Negative] :=
Select[Flatten[#, 1] &@Table[
{i, j, (j^2 - n)/(4 i)}, {i, Sqrt[-n/3]}, {j, 1 - i, i}],
Mod[#3, 1] == 0 && #3 >= # &&
GCD[##] == 1 && ! (# == #3 && #2 < 0) & @@ # &]
A001617[n_] := If[n < 1, 0,
1 + Sum[MoebiusMu[d]^2 n/d/12 - EulerPhi[GCD[d, n/d]]/2, {d,
Divisors@n}] -
Count[(#^2 - # + 1)/n & /@ Range[n], _?IntegerQ]/3 -
Count[(#^2 + 1)/n & /@ Range[n], _?IntegerQ]/4];
a[n_] := If[0 <= n <= 4, 0, (A001617[n] + 1)/2 - If[Mod[n, 8] == 3, 4, If[Mod[n, 8] == 7, 6, 3]] Length[ClassList[-4 n]]/12] (* David Jao, Sep 07 2020 *)
PROG
(PARI)
A000003(n) = qfbclassno(-4*n);
A000089(n) = {
if (n%4 == 0 || n%4 == 3, return(0));
if (n%2 == 0, n \= 2);
my(f = factor(n), fsz = matsize(f)[1]);
prod(k = 1, fsz, if (f[k, 1] % 4 == 3, 0, 2));
};
A000086(n) = {
if (n%9 == 0 || n%3 == 2, return(0));
if (n%3 == 0, n \= 3);
my(f = factor(n), fsz = matsize(f)[1]);
prod(k = 1, fsz, if (f[k, 1] % 3 == 2, 0, 2));
};
A001615(n) = {
my(f = factor(n), fsz = matsize(f)[1],
g = prod(k=1, fsz, (f[k, 1]+1)),
h = prod(k=1, fsz, f[k, 1]));
return((n*g)\h);
};
A001616(n) = {
my(f = factor(n), fsz = matsize(f)[1]);
prod(k = 1, fsz, f[k, 1]^(f[k, 2]\2) + f[k, 1]^((f[k, 2]-1)\2));
};
A001617(n) = 1 + A001615(n)/12 - A000089(n)/4 - A000086(n)/3 - A001616(n)/2;
a(n) = {
my(r = if (n%8 == 3, 4, n%8 == 7, 6, 3));
if (n < 5, 0, (1 + A001617(n))/2 - r * A000003(n)/12);
};
vector(102, n, a(n))
KEYWORD
nonn
AUTHOR
Gheorghe Coserea, Oct 21 2016
EXTENSIONS
New name from David Jao, Sep 07 2020
STATUS
approved