OFFSET
0,2
COMMENTS
a(150) = -1, a(n) > 0 for 0<=n<=149.
a(9999988) = 119999861 is the largest value in the first 1+10^7 terms of the sequence. - Gheorghe Coserea, May 24 2016
REFERENCES
J. A. Csirik, The genus of X_0(N) is not 150, preprint, 2000.
LINKS
Gheorghe Coserea, Table of n, a(n) for n = 0..200010
János A. Csirik, Joseph L. Wetherell, Michael E. Zieve, On the genera of X_0(N), arXiv:math/0006096 [math.NT], 2000.
FORMULA
A001617(a(A001617(n))) = A001617(n) and a(A054729(n)) = -1 for all n>=1. - Gheorghe Coserea, May 22 2016
MATHEMATICA
a1617[n_] := If[n<1, 0, 1+Sum[MoebiusMu[d]^2 n/d/12 - EulerPhi[GCD[d, n/d]]/2, {d, Divisors[n]}] - Count[(#^2 - # + 1)/n& /@ Range[n], _?IntegerQ]/3 - Count[(#^2+1)/n& /@ Range[n], _?IntegerQ]/4];
seq[n_] := Module[{inv, bnd}, inv = Table[-1, {n+1}]; bnd = 12n + 18 Floor[Sqrt[n]] + 100; For[k = 1, k <= bnd, k++, g = a1617[k]; If[g <= n && inv[[g+1]] == -1, inv[[g+1]] = k]]; inv];
seq[51] (* Jean-François Alcover, Nov 20 2018, after Gheorghe Coserea and Michael Somos in A001617 *)
PROG
(PARI)
A000089(n) = {
if (n%4 == 0 || n%4 == 3, return(0));
if (n%2 == 0, n \= 2);
my(f = factor(n), fsz = matsize(f)[1]);
prod(k = 1, fsz, if (f[k, 1] % 4 == 3, 0, 2));
};
A000086(n) = {
if (n%9 == 0 || n%3 == 2, return(0));
if (n%3 == 0, n \= 3);
my(f = factor(n), fsz = matsize(f)[1]);
prod(k = 1, fsz, if (f[k, 1] % 3 == 2, 0, 2));
};
A001615(n) = {
my(f = factor(n), fsz = matsize(f)[1],
g = prod(k=1, fsz, (f[k, 1]+1)),
h = prod(k=1, fsz, f[k, 1]));
return((n*g)\h);
};
A001616(n) = {
my(f = factor(n), fsz = matsize(f)[1]);
prod(k = 1, fsz, f[k, 1]^(f[k, 2]\2) + f[k, 1]^((f[k, 2]-1)\2));
};
seq(n) = {
my(inv = vector(n+1, g, -1), bnd = 12*n + 18*sqrtint(n) + 100, g);
for (k = 1, bnd, g = A001617(k);
if (g <= n && inv[g+1] == -1, inv[g+1] = k));
return(inv);
};
seq(51) \\ Gheorghe Coserea, May 21 2016
KEYWORD
sign
AUTHOR
Janos A. Csirik, Apr 21 2000
STATUS
approved