[go: up one dir, main page]

login
Search: a054729 -id:a054729
     Sort: relevance | references | number | modified | created      Format: long | short | data
a(n) is the smallest level N such that genus of modular curve X_0(N) is n (or -1 if no such curve exists).
+10
4
1, 11, 22, 30, 38, 42, 58, 60, 74, 66, 86, 78, 106, 105, 118, 102, 134, 114, 223, 132, 166, 138, 188, 156, 202, 168, 214, 174, 236, 186, 359, 204, 262, 230, 278, 222, 298, 240, 314, 246, 326, 210, 346, 270, 358, 282, 557, 306, 394, 312, 412, 318
OFFSET
0,2
COMMENTS
a(150) = -1, a(n) > 0 for 0<=n<=149.
a(9999988) = 119999861 is the largest value in the first 1+10^7 terms of the sequence. - Gheorghe Coserea, May 24 2016
REFERENCES
J. A. Csirik, The genus of X_0(N) is not 150, preprint, 2000.
LINKS
János A. Csirik, Joseph L. Wetherell, Michael E. Zieve, On the genera of X_0(N), arXiv:math/0006096 [math.NT], 2000.
FORMULA
A001617(a(A001617(n))) = A001617(n) and a(A054729(n)) = -1 for all n>=1. - Gheorghe Coserea, May 22 2016
MATHEMATICA
a1617[n_] := If[n<1, 0, 1+Sum[MoebiusMu[d]^2 n/d/12 - EulerPhi[GCD[d, n/d]]/2, {d, Divisors[n]}] - Count[(#^2 - # + 1)/n& /@ Range[n], _?IntegerQ]/3 - Count[(#^2+1)/n& /@ Range[n], _?IntegerQ]/4];
seq[n_] := Module[{inv, bnd}, inv = Table[-1, {n+1}]; bnd = 12n + 18 Floor[Sqrt[n]] + 100; For[k = 1, k <= bnd, k++, g = a1617[k]; If[g <= n && inv[[g+1]] == -1, inv[[g+1]] = k]]; inv];
seq[51] (* Jean-François Alcover, Nov 20 2018, after Gheorghe Coserea and Michael Somos in A001617 *)
PROG
(PARI)
A000089(n) = {
if (n%4 == 0 || n%4 == 3, return(0));
if (n%2 == 0, n \= 2);
my(f = factor(n), fsz = matsize(f)[1]);
prod(k = 1, fsz, if (f[k, 1] % 4 == 3, 0, 2));
};
A000086(n) = {
if (n%9 == 0 || n%3 == 2, return(0));
if (n%3 == 0, n \= 3);
my(f = factor(n), fsz = matsize(f)[1]);
prod(k = 1, fsz, if (f[k, 1] % 3 == 2, 0, 2));
};
A001615(n) = {
my(f = factor(n), fsz = matsize(f)[1],
g = prod(k=1, fsz, (f[k, 1]+1)),
h = prod(k=1, fsz, f[k, 1]));
return((n*g)\h);
};
A001616(n) = {
my(f = factor(n), fsz = matsize(f)[1]);
prod(k = 1, fsz, f[k, 1]^(f[k, 2]\2) + f[k, 1]^((f[k, 2]-1)\2));
};
A001617(n) = 1 + A001615(n)/12 - A000089(n)/4 - A000086(n)/3 - A001616(n)/2;
seq(n) = {
my(inv = vector(n+1, g, -1), bnd = 12*n + 18*sqrtint(n) + 100, g);
for (k = 1, bnd, g = A001617(k);
if (g <= n && inv[g+1] == -1, inv[g+1] = k));
return(inv);
};
seq(51) \\ Gheorghe Coserea, May 21 2016
CROSSREFS
KEYWORD
sign
AUTHOR
Janos A. Csirik, Apr 21 2000
STATUS
approved
Odd n such that genus of modular curve X_0(N) is never equal to n.
+10
2
49267, 74135, 94091, 96463, 102727, 107643, 118639, 138483, 145125, 181703, 182675, 208523, 221943, 237387, 240735, 245263, 255783, 267765, 269627, 272583, 277943, 280647, 283887, 286815, 309663, 313447, 322435, 326355, 336675, 347823, 352719
OFFSET
1,1
COMMENTS
There are 4329 odd integers in the sequence less than 10^7. - Gheorghe Coserea, May 23 2016
REFERENCES
J. A. Csirik, The genus of X_0(N) is not 150, preprint, 2000.
LINKS
J. A. Csirik, M. Zieve, and J. Wetherell, On the genera of X0(N), arXiv:math/0006096 [math.NT], 2000.
PROG
(PARI)
A000089(n) = {
if (n%4 == 0 || n%4 == 3, return(0));
if (n%2 == 0, n \= 2);
my(f = factor(n), fsz = matsize(f)[1]);
prod(k = 1, fsz, if (f[k, 1] % 4 == 3, 0, 2));
};
A000086(n) = {
if (n%9 == 0 || n%3 == 2, return(0));
if (n%3 == 0, n \= 3);
my(f = factor(n), fsz = matsize(f)[1]);
prod(k = 1, fsz, if (f[k, 1] % 3 == 2, 0, 2));
};
A001615(n) = {
my(f = factor(n), fsz = matsize(f)[1],
g = prod(k=1, fsz, (f[k, 1]+1)),
h = prod(k=1, fsz, f[k, 1]));
return((n*g)\h);
};
A001616(n) = {
my(f = factor(n), fsz = matsize(f)[1]);
prod(k = 1, fsz, f[k, 1]^(f[k, 2]\2) + f[k, 1]^((f[k, 2]-1)\2));
};
A001617(n) = 1 + A001615(n)/12 - A000089(n)/4 - A000086(n)/3 - A001616(n)/2;
scan(n) = {
my(inv = vector(n+1, g, -1), bnd = 12*n + 18*sqrtint(n) + 100, g);
for (k = 1, bnd, g = A001617(k);
if (g <= n && inv[g+1] == -1, inv[g+1] = k));
select(x->(x%2==1), apply(x->(x-1), Vec(select(x->x==-1, inv, 1))));
};
scan(400*1000)
CROSSREFS
KEYWORD
nonn
AUTHOR
Janos A. Csirik, Apr 21 2000
EXTENSIONS
More terms from Gheorghe Coserea, May 23 2016
Offset corrected by Gheorghe Coserea, May 23 2016
STATUS
approved
a(n) is the number of solutions of the equation n = A001617(k).
+10
2
15, 12, 8, 11, 7, 14, 4, 13, 7, 12, 4, 15, 4, 9, 6, 10, 5, 16, 2, 20, 3, 14, 7, 11, 2, 13, 5, 11, 3, 14, 3, 9, 6, 13, 3, 17, 3, 14, 4, 10, 4, 20, 3, 15, 3, 12, 1, 15, 2, 20, 4, 11, 3, 13, 3, 16, 3, 12, 3, 15, 3, 12, 5, 9, 4, 15, 2, 14, 5, 17, 3, 13
OFFSET
0,1
COMMENTS
The zeros of the sequence are given by A054729. The first five zeros of the sequence have indexes 150, 180, 210, 286, 304.
LINKS
J. A. Csirik, M. Zieve, and J. Wetherell, On the genera of X0(N), arXiv:math/0006096 [math.NT], 2000.
FORMULA
a(n) = card {k, n = A001617(k)}.
EXAMPLE
For n = 0 the a(0) = 15 solutions are:
1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 12, 13, 16, 18, 25 (A091401).
For n = 1 the a(1) = 12 solutions are:
11, 14, 15, 17, 19, 20, 21, 24, 27, 32, 36, 49 (A091403).
For n = 2 the a(2) = 8 solutions are:
22, 23, 26, 28, 29, 31, 37, 50 (A091404).
MATHEMATICA
(* b = A001617 *) nmax = 71;
b[n_] := b[n] = If[n < 1, 0, 1 + Sum[ MoebiusMu[ d]^2 n/d / 12 - EulerPhi[ GCD[ d, n/d]] / 2, {d, Divisors[n]}] - Count[(#^2 - # + 1)/n& /@ Range[n], _?IntegerQ]/3 -Count[(#^2 + 1)/n& /@ Range[n], _?IntegerQ]/4];
Clear[f];
f[m_] := f[m] = Module[{}, A001617 = Array[b, m]; a[n_] := Count[A001617, n]; Table[a[n], {n, 0, nmax}]];
f[m = nmax]; f[m = m + nmax];
While[Print["m = ", m]; f[m] != f[m - nmax], m = m + nmax];
A273445 = f[m] (* Jean-François Alcover, Dec 16 2018, using Michael Somos' code for A001617 *)
PROG
(PARI)
A000089(n) = {
if (n%4 == 0 || n%4 == 3, return(0));
if (n%2 == 0, n \= 2);
my(f = factor(n), fsz = matsize(f)[1]);
prod(k = 1, fsz, if (f[k, 1] % 4 == 3, 0, 2));
};
A000086(n) = {
if (n%9 == 0 || n%3 == 2, return(0));
if (n%3 == 0, n \= 3);
my(f = factor(n), fsz = matsize(f)[1]);
prod(k = 1, fsz, if (f[k, 1] % 3 == 2, 0, 2));
};
A001615(n) = {
my(f = factor(n), fsz = matsize(f)[1],
g = prod(k=1, fsz, (f[k, 1]+1)),
h = prod(k=1, fsz, f[k, 1]));
return((n*g)\h);
};
A001616(n) = {
my(f = factor(n), fsz = matsize(f)[1]);
prod(k = 1, fsz, f[k, 1]^(f[k, 2]\2) + f[k, 1]^((f[k, 2]-1)\2));
};
A001617(n) = 1 + A001615(n)/12 - A000089(n)/4 - A000086(n)/3 - A001616(n)/2;
seq(n) = {
my(a = vector(n+1, g, 0), bnd = 12*n + 18*sqrtint(n) + 100, g);
for (k = 1, bnd, g = A001617(k);
if (g <= n, a[g+1]++));
return(a);
};
seq(72)
CROSSREFS
KEYWORD
nonn
AUTHOR
Gheorghe Coserea, May 22 2016
STATUS
approved
a(n) is the largest level N such that genus of modular curve X_0(N) is n (or -1 if no such curve exists).
+10
1
25, 49, 50, 64, 81, 75, 121, 100, 169, 128, 127, 147, 157, 163, 181, 193, 199, 289, 229, 243, 239, 257, 361, 283, 293, 313, 343, 337, 349, 353, 373, 379, 397, 409, 421, 529, 439, 457, 463, 467, 487, 499, 509, 523, 541, 547, 557, 577, 625, 601, 613, 619, 631, 643, 661, 673, 677, 691, 841, 667, 733
OFFSET
0,1
COMMENTS
a(10^7) = 120000007 is the largest value in the first 1+10^7 terms of the sequence.
The exception occurs first at a(150) = -1. - Georg Fischer, Feb 15 2019
LINKS
J. A. Csirik, M. Zieve, and J. Wetherell, On the genera of X0(N), arXiv:math/0006096 [math.NT], 2000.
FORMULA
Let S(n) = {k, n = A001617(k)}; if the level set S(n) is not empty then a(n) = max S(n) and A054728(n) = min S(n) and A273445(n) = card S(n), otherwise a(n) = A054728(n) = -1 and A273445(n) = 0.
EXAMPLE
For n = 0 we have 0 = A001617(k) when k is 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 12, 13, 16, 18, 25 (A091401); the largest of this values is 25 therefore a(0) = 25.
For n = 1 we have 1 = A001617(k) when k is 11, 14, 15, 17, 19, 20, 21, 24, 27, 32, 36, 49 (A091403); the largest of this values is 49 therefore a(1) = 49.
For n = 2 we have 2 = A001617(k) when k is 22, 23, 26, 28, 29, 31, 37, 50 (A091404); the largest of this values is 50 therefore a(2) = 50.
For n = 150 (= A054729(1)) we have 150 <> A001617(k) for all k therefore a(150) = -1.
MATHEMATICA
a1617[n_] := If[n < 1, 0, 1 + Sum[MoebiusMu[d]^2 n/d/12 - EulerPhi[GCD[d, n/d]]/2, {d, Divisors[n]}] - Count[(#^2 - # + 1)/n& /@ Range[n], _?IntegerQ]/3 - Count[(#^2 + 1)/n& /@ Range[n], _?IntegerQ]/4];
seq[n_] := Module[{a, bnd}, a = Table[-1, {n+1}]; bnd = 12n + 18 Floor[Sqrt[n] ] + 100; For[k = 1, k <= bnd, k++, g = a1617[k]; If[g <= n, a[[g+1]] = k]]; a];
seq[60] (* Jean-François Alcover, Nov 20 2018, after Gheorghe Coserea and Michael Somos in A001617 *)
PROG
(PARI)
A000089(n) = {
if (n%4 == 0 || n%4 == 3, return(0));
if (n%2 == 0, n \= 2);
my(f = factor(n), fsz = matsize(f)[1]);
prod(k = 1, fsz, if (f[k, 1] % 4 == 3, 0, 2));
};
A000086(n) = {
if (n%9 == 0 || n%3 == 2, return(0));
if (n%3 == 0, n \= 3);
my(f = factor(n), fsz = matsize(f)[1]);
prod(k = 1, fsz, if (f[k, 1] % 3 == 2, 0, 2));
};
A001615(n) = {
my(f = factor(n), fsz = matsize(f)[1],
g = prod(k=1, fsz, (f[k, 1]+1)),
h = prod(k=1, fsz, f[k, 1]));
return((n*g)\h);
};
A001616(n) = {
my(f = factor(n), fsz = matsize(f)[1]);
prod(k = 1, fsz, f[k, 1]^(f[k, 2]\2) + f[k, 1]^((f[k, 2]-1)\2));
};
A001617(n) = 1 + A001615(n)/12 - A000089(n)/4 - A000086(n)/3 - A001616(n)/2;
seq(n) = {
my(a = vector(n+1, g, -1), bnd = 12*n + 18*sqrtint(n) + 100, g);
for (k = 1, bnd, g = A001617(k); if (g <= n, a[g+1] = k));
return(a);
};
seq(60)
KEYWORD
sign
AUTHOR
Gheorghe Coserea, May 23 2016
STATUS
approved

Search completed in 0.007 seconds