[go: up one dir, main page]

login
A372193
Number of labeled simple graphs on n vertices with a unique cycle of length > 2.
14
0, 0, 0, 1, 19, 317, 5582, 108244, 2331108, 55636986, 1463717784, 42182876763, 1323539651164, 44955519539963, 1644461582317560, 64481138409909506, 2698923588248208224, 120133276796015812548, 5667351458582453925696, 282496750694780020437765, 14837506263979393796687088
OFFSET
0,5
COMMENTS
An undirected cycle in a graph is a sequence of distinct vertices, up to rotation and reversal, such that there are edges between all consecutive elements, including the last and the first.
LINKS
FORMULA
E.g.f.: B(x)*C(x) where B(x) is the e.g.f. of A057500 and C(x) is the e.g.f. of A001858. - Andrew Howroyd, Jul 31 2024
EXAMPLE
The a(4) = 19 graphs:
12,13,23
12,14,24
13,14,34
23,24,34
12,13,14,23
12,13,14,24
12,13,14,34
12,13,23,24
12,13,23,34
12,13,24,34
12,14,23,24
12,14,23,34
12,14,24,34
12,23,24,34
13,14,23,24
13,14,23,34
13,14,24,34
13,23,24,34
14,23,24,34
MATHEMATICA
cyc[y_]:=Select[Join@@Table[Select[Join@@Permutations /@ Subsets[Union@@y, {k}], And @@ Table[MemberQ[Sort/@y, Sort[{#[[i]], #[[If[i==k, 1, i+1]]]}]], {i, k}]&], {k, 3, Length[y]}], Min@@#==First[#]&];
Table[Length[Select[Subsets[Subsets[Range[n], {2}]], Length[cyc[#]]==2&]], {n, 0, 5}]
PROG
(PARI) seq(n)={my(w=lambertw(-x+O(x*x^n))); Vec(serlaplace(exp(-w-w^2/2)*(-log(1+w)/2 + w/2 - w^2/4)), -n-1)} \\ Andrew Howroyd, Jul 31 2024
CROSSREFS
For no cycles we have A001858 (covering A105784), unlabeled A005195 (covering A144958).
Counting triangles instead of cycles gives A372172 (non-covering A372171), unlabeled A372194 (non-covering A372174).
The unlabeled version is A236570, non-covering A372191.
The covering case is A372195, column k = 1 of A372175.
A000088 counts unlabeled graphs, labeled A006125.
A002807 counts cycles in a complete graph.
A006129 counts labeled graphs, unlabeled A002494.
A372167 counts graphs by triangles, non-covering A372170.
A372173 counts unlabeled graphs by triangles, non-covering A263340.
Sequence in context: A138943 A111420 A166965 * A137352 A027541 A143699
KEYWORD
nonn
AUTHOR
Gus Wiseman, Apr 25 2024
EXTENSIONS
a(7) onwards from Andrew Howroyd, Jul 31 2024
STATUS
approved