OFFSET
0,7
REFERENCES
F. Harary and E. Palmer, Graphical Enumeration, Academic Press, 1973, Page 29, Exercise 1.4.
LINKS
Michael De Vlieger, Table of n, a(n) for n = 0..10700
A. N. Bhavale and B. N. Waphare, Basic retracts and counting of lattices, Australasian J. of Combinatorics (2020) Vol. 78, No. 1, 73-99.
R. Tauraso, Edge cover time for regular graphs, JIS 11 (2008) 08.4.4.
FORMULA
T(n, k) = Sum_{i=0..n} (-1)^(n-i)*C(n, i)*C(C(i, 2), k), k=0...n*(n-1)/2.
E.g.f.: exp(-x)*Sum_{n>=0} (1 + y)^C(n,2)*x^n/n!. - Geoffrey Critzer, Oct 07 2012
EXAMPLE
From Gus Wiseman, Feb 14 2024: (Start)
Triangle begins:
1
0
0 1
0 0 3 1
0 0 3 16 15 6 1
0 0 0 30 135 222 205 120 45 10 1
Row n = 4 counts the following graphs:
. . 12-34 12-13-14 12-13-14-23 12-13-14-23-24 12-13-14-23-24-34
13-24 12-13-24 12-13-14-24 12-13-14-23-34
14-23 12-13-34 12-13-14-34 12-13-14-24-34
12-14-23 12-13-23-24 12-13-23-24-34
12-14-34 12-13-23-34 12-14-23-24-34
12-23-24 12-13-24-34 13-14-23-24-34
12-23-34 12-14-23-24
12-24-34 12-14-23-34
13-14-23 12-14-24-34
13-14-24 12-23-24-34
13-23-24 13-14-23-24
13-23-34 13-14-23-34
13-24-34 13-14-24-34
14-23-24 13-23-24-34
14-23-34 14-23-24-34
14-24-34
(End)
MATHEMATICA
nn=5; s=Sum[(1+y)^Binomial[n, 2] x^n/n!, {n, 0, nn}]; Range[0, nn]! CoefficientList[Series[ s Exp[-x], {x, 0, nn}], {x, y}] //Grid (* returns triangle indexed at n = 0, Geoffrey Critzer, Oct 07 2012 *)
Table[Length[Select[Subsets[Subsets[Range[n], {2}], {k}], Union@@#==Range[n]&]], {n, 0, 5}, {k, 0, Binomial[n, 2]}] (* Gus Wiseman, Feb 14 2024 *)
CROSSREFS
KEYWORD
easy,nonn,tabf
AUTHOR
Vladeta Jovovic, Apr 09 2000
EXTENSIONS
a(0) prepended by Gus Wiseman, Feb 14 2024
STATUS
approved