[go: up one dir, main page]

login
A244963
a(n) = sigma(n) - n * Product_{p|n, p prime} (1 + 1/p).
5
0, 0, 0, 1, 0, 0, 0, 3, 1, 0, 0, 4, 0, 0, 0, 7, 0, 3, 0, 6, 0, 0, 0, 12, 1, 0, 4, 8, 0, 0, 0, 15, 0, 0, 0, 19, 0, 0, 0, 18, 0, 0, 0, 12, 6, 0, 0, 28, 1, 3, 0, 14, 0, 12, 0, 24, 0, 0, 0, 24, 0, 0, 8, 31, 0, 0, 0, 18, 0, 0, 0, 51, 0, 0, 4, 20, 0, 0, 0, 42, 13
OFFSET
1,8
COMMENTS
a(n) = 0 if and only if n is a squarefree number (A005117), otherwise a(n) > 0.
If n is semiprime, then a(n) = 1+floor(sqrt(n))-ceiling(sqrt(n)). - Wesley Ivan Hurt, Dec 25 2016
LINKS
FORMULA
a(n) = A000203(n) - A001615(n).
Sum_{k=1..n} a(k) ~ c*n^2 + O(n*log(n)), where c = Pi^2/12 - 15/(2*Pi^2) = 0.062558... - Amiram Eldar, Mar 02 2021
MAPLE
A244963:= n -> numtheory:-sigma(n) - n*mul(1+1/t[1], t=ifactors(n)[2]):
seq(A244963(n), n=1..1000); # Robert Israel, Jul 15 2014
MATHEMATICA
nn = 200; Table[Sum[d, {d, Divisors[n]}], {n, 1, nn}] -
Table[Sum[n/d Abs[MoebiusMu[d]], {d, Divisors[n]}], {n, 1, nn}] (* Geoffrey Critzer, Mar 18 2015 *)
PROG
(PARI)
A001615(n) = (n * sumdivmult(n, d, issquarefree(d)/d)); \\ This function from Charles R Greathouse IV, Sep 09 2014
A244963(n) = (sigma(n) - A001615(n)); \\ Antti Karttunen, Nov 22 2017
CROSSREFS
Cf. A000203 (sigma), A001615 (Dedekind psi), A005117 (positions of zeros), A013929, A049417.
Sequence in context: A272481 A054548 A059202 * A144452 A217334 A369455
KEYWORD
nonn,easy
AUTHOR
Omar E. Pol, Jul 15 2014
STATUS
approved