[go: up one dir, main page]

login
A372167
Irregular triangle read by rows where T(n,k) is the number of simple graphs covering n vertices with exactly k triangles.
15
1, 0, 1, 3, 1, 22, 12, 6, 0, 1, 237, 220, 165, 70, 35, 30, 0, 10, 0, 0, 1, 3961, 5460, 5830, 4140, 2805, 2112, 1230, 720, 600, 180, 230, 60, 45, 60, 0, 0, 15, 0, 0, 0, 1
OFFSET
0,4
FORMULA
Inverse binomial transform of columns of A372170.
EXAMPLE
Triangle begins:
1
0
1
3 1
22 12 6 0 1
237 220 165 70 35 30 0 10 0 0 1
Row k = 4 counts the following graphs:
12-34 12-13-14-23 12-13-14-23-24 . 12-13-14-23-24-34
13-24 12-13-14-24 12-13-14-23-34
14-23 12-13-14-34 12-13-14-24-34
12-13-14 12-13-23-24 12-13-23-24-34
12-13-24 12-13-23-34 12-14-23-24-34
12-13-34 12-14-23-24 13-14-23-24-34
12-14-23 12-14-24-34
12-14-34 12-23-24-34
12-23-24 13-14-23-34
12-23-34 13-14-24-34
12-24-34 13-23-24-34
13-14-23 14-23-24-34
13-14-24
13-23-24
13-23-34
13-24-34
14-23-24
14-23-34
14-24-34
12-13-24-34
12-14-23-34
13-14-23-24
MATHEMATICA
cys[y_]:=Select[Subsets[Union@@y, {3}], MemberQ[y, {#[[1]], #[[2]]}] && MemberQ[y, {#[[1]], #[[3]]}] && MemberQ[y, {#[[2]], #[[3]]}]&];
Table[Length[Select[Subsets[Subsets[Range[n], {2}]], Union@@#==Range[n]&&Length[cys[#]]==k&]], {n, 0, 5}, {k, 0, Binomial[n, 3]}]
CROSSREFS
Row sums are A006129, unlabeled A002494.
Row lengths are A050407.
Counting edges instead of triangles gives A054548, unlabeled A370167.
Column k = 0 is A372168 (non-covering A213434), unlabeled A372169.
Covering case of A372170, unlabeled A263340.
Column k = 1 is A372171 (non-covering A372172), unlabeled A372174.
The unlabeled version is A372173.
For all cycles (not just triangles) we have A372175, non-covering A372176.
A001858 counts acyclic graphs, unlabeled A005195.
A006125 counts simple graphs, unlabeled A000088.
A105784 counts acyclic covering graphs, unlabeled A144958.
Sequence in context: A346214 A190962 A010291 * A370948 A306619 A335644
KEYWORD
nonn,tabf,more
AUTHOR
Gus Wiseman, Apr 23 2024
STATUS
approved