OFFSET
0,4
COMMENTS
A directed cycle in a simple (undirected) graph is a sequence of distinct vertices, up to rotation, such that there are edges between all consecutive elements, including the last and the first.
EXAMPLE
Triangle begins (zeros shown as dots):
1
.
1
3 1
19 15 . 6 ... 1
155 232 15 190 .. 70 50 .... 30 15 .......... 10 .............. 1
Row n = 4 counts the following graphs:
12,34 12,13,14,23 . 12,13,14,23,24 . . . 12,13,14,23,24,34
13,24 12,13,14,24 12,13,14,23,34
14,23 12,13,14,34 12,13,14,24,34
12,13,14 12,13,23,24 12,13,23,24,34
12,13,24 12,13,23,34 12,14,23,24,34
12,13,34 12,13,24,34 13,14,23,24,34
12,14,23 12,14,23,24
12,14,34 12,14,23,34
12,23,24 12,14,24,34
12,23,34 12,23,24,34
12,24,34 13,14,23,24
13,14,23 13,14,23,34
13,14,24 13,14,24,34
13,23,24 13,23,24,34
13,23,34 14,23,24,34
13,24,34
14,23,24
14,23,34
14,24,34
MATHEMATICA
cycles[g_]:=Join@@Table[Select[Join@@Permutations /@ Subsets[Union@@g, {k}], Min@@#==First[#]&&And@@Table[MemberQ[Sort/@g, Sort[{#[[i]], #[[If[i==k, 1, i+1]]]}]], {i, k}]&], {k, 3, Length[g]}];
Table[Length[Select[Subsets[Subsets[Range[n], {2}]], Union@@#==Range[n]&&Length[cycles[#]]==2k&]], {n, 0, 5}, {k, 0, Length[cycles[Subsets[Range[n], {2}]]]/2}]
CROSSREFS
Row lengths are A002807 + 1.
Column k = 0 is A105784 (for triangles A372168, non-covering A213434), unlabeled A144958 (for triangles A372169).
Counting triangles instead of cycles gives A372167 (non-covering A372170), unlabeled A372173 (non-covering A263340).
The non-covering version is A372176.
KEYWORD
nonn,more,tabf
AUTHOR
Gus Wiseman, Apr 24 2024
STATUS
approved