OFFSET
0,5
COMMENTS
a(n) is the number of simple unlabeled graphs on n nodes whose components have exactly one cycle. - Geoffrey Critzer, Oct 12 2012
Also the number of unlabeled simple graphs with n vertices and n edges such that it is possible to choose a different vertex from each edge. - Gus Wiseman, Jan 25 2024
LINKS
Andrew Howroyd, Table of n, a(n) for n = 0..500
F. Ruskey, Combinatorial Generation, p. 79, Eq.(4.27), 2003
Eric Weisstein's World of Mathematics, Pseudoforest.
Wikipedia, Pseudoforest.
FORMULA
a(n) = Sum_{1*j_1 + 2*j_2 + ... = n} (Product_{i=3..n} binomial(A001429(i) + j_i -1, j_i)). [F. Ruskey p. 79, (4.27) with n replaced by n+1, and a_i replaced by A001429(i)].
Euler transform of A001429. - Geoffrey Critzer, Oct 12 2012
EXAMPLE
From Gus Wiseman, Jan 25 2024: (Start)
Representatives of the a(0) = 1 through a(5) = 5 simple graphs:
{} . . {12,13,23} {12,13,14,23} {12,13,14,15,23}
{12,13,24,34} {12,13,14,23,25}
{12,13,14,23,45}
{12,13,14,25,35}
{12,13,24,35,45}
(End)
MATHEMATICA
Needs["Combinatorica`"];
nn=30; s[n_, k_]:=s[n, k]=a[n+1-k]+If[n<2k, 0, s[n-k, k]]; a[1]=1; a[n_]:=a[n]=Sum[a[i]s[n-1, i]i, {i, 1, n-1}]/(n-1); rt=Table[a[i], {i, 1, nn}]; c=Drop[Apply[Plus, Table[Take[CoefficientList[CycleIndex[DihedralGroup[n], s]/.Table[s[j]->Table[Sum[rt[[i]]x^(k*i), {i, 1, nn}], {k, 1, nn}][[j]], {j, 1, nn}], x], nn], {n, 3, nn}]], 1]; CoefficientList[Series[Product[1/(1-x^i)^c[[i]], {i, 1, nn-1}], {x, 0, nn}], x] (* Geoffrey Critzer, Oct 12 2012, after code given by Robert A. Russell in A000081 *)
brute[m_]:=First[Sort[Table[Sort[Sort/@(m/.Rule@@@Table[{(Union@@m)[[i]], p[[i]]}, {i, Length[p]}])], {p, Permutations[Range[Length[Union@@m]]]}]]];
Table[Length[Union[brute/@Select[Subsets[Subsets[Range[n], {2}], {n}], Select[Tuples[#], UnsameQ@@#&]!={}&]]], {n, 0, 5}] (* Gus Wiseman, Jan 25 2024 *)
CROSSREFS
KEYWORD
nonn
AUTHOR
Washington Bomfim, Feb 24 2008
EXTENSIONS
Edited by Washington Bomfim, Jun 27 2012
Terms a(30) and beyond from Andrew Howroyd, May 05 2018
Offset changed to 0 by Gus Wiseman, Jan 27 2024
STATUS
approved