OFFSET
1,3
COMMENTS
Number of labeled acyclic graphs covering n vertices. The unlabeled version is A144958. This is the covering case A001858. The connected case is A000272. - Gus Wiseman, Apr 28 2024
LINKS
Alois P. Heinz, Table of n, a(n) for n = 1..150
FORMULA
a(n)= sum N/D over all the partitions of n: 1K1 + 2K2 + ... + nKn, with smallest part greater than 1, where N = n!*Product_{i=1..n}i^((i-2)Ki) and D = Product_{i=1..n}(Ki!(i!)^Ki).
Inverse binomial transform of A001858. E.g.f.: exp(-x-LambertW(-x) -LambertW(-x)^2/2). - Vladeta Jovovic, Apr 22 2005
a(n) ~ exp(-exp(-1)+1/2) * n^(n-2). - Vaclav Kotesovec, Aug 16 2013
EXAMPLE
a(4) = 19 because there are 19 different such forests on 4 labeled nodes: 4^2 are trees, 3 have two trees and none can have more than two trees.
From Gus Wiseman, Apr 28 2024: (Start)
Edge-sets of the a(2) = 1 through a(4) = 19 forests:
12 12,13 12,34
12,23 13,24
13,23 14,23
12,13,14
12,13,24
12,13,34
12,14,23
12,14,34
12,23,24
12,23,34
12,24,34
13,14,23
13,14,24
13,23,24
13,23,34
13,24,34
14,23,24
14,23,34
14,24,34
(End)
MAPLE
b:= n-> add(add(binomial(m, j) *binomial(n-1, n-m-j)
*n^(n-m-j) *(m+j)!/ (-2)^j, j=0..m)/m!, m=0..n):
a:= n-> add(b(k) *(-1)^(n-k) *binomial(n, k), k=0..n):
seq(a(n), n=1..17); # Alois P. Heinz, Sep 10 2008
MATHEMATICA
Unprotect[Power]; 0^0 = 1; b[n_] := Sum[Sum[Binomial[m, j]*Binomial[n-1, n -m-j]*n^(n-m-j)*(m+j)!/(-2)^j, {j, 0, m}]/m!, {m, 0, n}]; a[n_] := Sum[ b[k]*(-1)^(n-k)*Binomial[n, k], {k, 0, n}]; Table[a[n], {n, 1, 17}] (* Jean-François Alcover, Jan 08 2016, after Alois P. Heinz *)
KEYWORD
nonn
AUTHOR
Washington Bomfim, Apr 21 2005
STATUS
approved