[go: up one dir, main page]

login
A212213
Array read by antidiagonals: pi(n) + pi(k) - pi(n+k), where pi() = A000720.
8
0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 1, 0, 1, 0, 1, 1, 1, 1, 1, 1, 1, 2, 1, 2, 1, 2, 1, 0, 1, 1, 1, 1, 1, 1, 0, 0, 1, 1, 2, 1, 2, 1, 1, 0, 0, 0, 0, 1, 1, 1, 1, 0, 0, 0, 0, 1, 0, 1, 1, 2, 1, 1, 0, 1, 0, 1, 1, 1, 1, 1, 2, 2, 1, 1, 1, 1, 1, 1, 2, 1, 2, 1, 2, 2, 2, 1, 2, 1, 2, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0
OFFSET
2,23
COMMENTS
It is conjectured that pi(x) + pi(y) >= pi(x+y) for 1 < y <= x.
REFERENCES
D. S. Mitrinovic et al., Handbook of Number Theory, Kluwer, Section VII.5, p. 235.
LINKS
P. Erdős and J. L. Selfridge, Complete prime subsets of consecutive integers. Proceedings of the Manitoba Conference on Numerical Mathematics (Univ. Manitoba, Winnipeg, Man., 1971), pp. 1-14. Dept. Comput. Sci., Univ. Manitoba, Winnipeg, Man., 1971.
EXAMPLE
Array begins:
0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, ...
0, 1, 0, 1, 1, 2, 1, 1, 0, 1, 1, ...
0, 0, 0, 1, 1, 1, 1, 0, 0, 1, 1, ...
0, 1, 1, 2, 1, 2, 1, 1, 1, 2, 1, ...
0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, ...
1, 2, 1, 2, 1, 2, 2, 2, 1, 2, 1, ...
1, 1, 1, 1, 1, 2, 2, 1, 1, 1, 1, ...
...
MATHEMATICA
t[n_, k_] := PrimePi[n] + PrimePi[k] - PrimePi[n + k]; Table[t[n - k + 2, k], {n, 0, 15}, {k, 2, n}] // Flatten (* Jean-François Alcover, Dec 31 2012 *)
KEYWORD
nonn,tabl,nice
AUTHOR
N. J. A. Sloane, May 04 2012
STATUS
approved