OFFSET
2,10
COMMENTS
It is conjectured that pi(x) + pi(y) >= pi(x+y) for 1 < y <= x.
REFERENCES
D. S. Mitrinovic et al., Handbook of Number Theory, Kluwer, Section VII.5, p. 235.
LINKS
Reinhard Zumkeller, Rows n = 2..150 of triangle, flattened
P. Erdős and J. L. Selfridge, Complete prime subsets of consecutive integers. Proceedings of the Manitoba Conference on Numerical Mathematics (Univ. Manitoba, Winnipeg, Man., 1971), pp. 1--14. Dept. Comput. Sci., Univ. Manitoba, Winnipeg, Man., 1971. MR0337828 (49 #2597).
EXAMPLE
Triangle begins:
0,
0, 1,
0, 0, 0,
0, 1, 1, 2,
0, 1, 1, 1, 1,
1, 2, 1, 2, 1, 2,
1, 1, 1, 1, 1, 2, 2,
0, 1, 0, 1, 1, 2, 1, 1,
0, 0, 0, 1, 1, 1, 1, 0, 0,
0, 1, 1, 2, 1, 2, 1, 1, 1, 2,
0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
...
MATHEMATICA
t[n_, k_] := PrimePi[n] + PrimePi[k] - PrimePi[n+k]; Flatten[ Table[t[n, k], {n, 2, 13}, {k, 2, n}]] (* Jean-François Alcover, May 21 2012 *)
PROG
(Haskell)
a212211 n k = a212211_tabl !! (n-2) !! (k-2)
a212211_tabl = map a212211_row [2..]
a212211_row n = zipWith (-)
(map (+ a000720 n) $ take (n - 1) $ tail a000720_list)
(drop (n + 1) a000720_list)
-- Reinhard Zumkeller, May 04 2012
CROSSREFS
KEYWORD
AUTHOR
N. J. A. Sloane, May 04 2012
STATUS
approved