[go: up one dir, main page]

login
A212211
Triangle read by rows: T(n,k) = pi(n) + pi(k) - pi(n+k), n >= 2, 2 <= k <= n, where pi() = A000720().
3
0, 0, 1, 0, 0, 0, 0, 1, 1, 2, 0, 1, 1, 1, 1, 1, 2, 1, 2, 1, 2, 1, 1, 1, 1, 1, 2, 2, 0, 1, 0, 1, 1, 2, 1, 1, 0, 0, 0, 1, 1, 1, 1, 0, 0, 0, 1, 1, 2, 1, 2, 1, 1, 1, 2, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 2, 1, 2, 2, 2, 1, 2, 2, 3
OFFSET
2,10
COMMENTS
It is conjectured that pi(x) + pi(y) >= pi(x+y) for 1 < y <= x.
REFERENCES
D. S. Mitrinovic et al., Handbook of Number Theory, Kluwer, Section VII.5, p. 235.
LINKS
P. Erdős and J. L. Selfridge, Complete prime subsets of consecutive integers. Proceedings of the Manitoba Conference on Numerical Mathematics (Univ. Manitoba, Winnipeg, Man., 1971), pp. 1--14. Dept. Comput. Sci., Univ. Manitoba, Winnipeg, Man., 1971. MR0337828 (49 #2597).
EXAMPLE
Triangle begins:
0,
0, 1,
0, 0, 0,
0, 1, 1, 2,
0, 1, 1, 1, 1,
1, 2, 1, 2, 1, 2,
1, 1, 1, 1, 1, 2, 2,
0, 1, 0, 1, 1, 2, 1, 1,
0, 0, 0, 1, 1, 1, 1, 0, 0,
0, 1, 1, 2, 1, 2, 1, 1, 1, 2,
0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
...
MATHEMATICA
t[n_, k_] := PrimePi[n] + PrimePi[k] - PrimePi[n+k]; Flatten[ Table[t[n, k], {n, 2, 13}, {k, 2, n}]] (* Jean-François Alcover, May 21 2012 *)
PROG
(Haskell)
a212211 n k = a212211_tabl !! (n-2) !! (k-2)
a212211_tabl = map a212211_row [2..]
a212211_row n = zipWith (-)
(map (+ a000720 n) $ take (n - 1) $ tail a000720_list)
(drop (n + 1) a000720_list)
-- Reinhard Zumkeller, May 04 2012
KEYWORD
nonn,tabl,nice
AUTHOR
N. J. A. Sloane, May 04 2012
STATUS
approved