[go: up one dir, main page]

login
A212212
Array read by antidiagonals: pi(n) + pi(k) - pi(n+k), where pi() = A000720.
4
-1, -1, -1, 0, 0, 0, -1, 0, 0, -1, 0, 0, 1, 0, 0, -1, 0, 0, 0, 0, -1, 0, 0, 1, 0, 1, 0, 0, 0, 1, 1, 1, 1, 1, 1, 0, 0, 1, 2, 1, 2, 1, 2, 1, 0, -1, 0, 1, 1, 1, 1, 1, 1, 0, -1, 0, 0, 1, 1, 2, 1, 2, 1, 1, 0, 0, -1, 0, 0, 0, 1, 1, 1, 1, 0, 0, 0, -1, 0, 0, 1, 0, 1, 1, 2, 1, 1, 0, 1, 0, 0, 0, 1, 1, 1, 1, 1, 2, 2, 1, 1, 1, 1, 1, 0
OFFSET
1,39
COMMENTS
It is conjectured that pi(x) + pi(y) >= pi(x+y) for 1 < y <= x.
REFERENCES
D. S. Mitrinovic et al., Handbook of Number Theory, Kluwer, Section VII.5, p. 235.
LINKS
P. Erdős and J. L. Selfridge, Complete prime subsets of consecutive integers. Proceedings of the Manitoba Conference on Numerical Mathematics (Univ. Manitoba, Winnipeg, Man., 1971), pp. 1-14. Dept. Comput. Sci., Univ. Manitoba, Winnipeg, Man., 1971. MR0337828 (49 #2597).
EXAMPLE
Array begins:
-1, -1, 0, -1, 0, -1, 0, 0, 0, -1, 0, -1, ...
-1, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, ...
0, 0, 1, 0, 1, 1, 2, 1, 1, 0, 1, 1, ...
-1, 0, 0, 0, 1, 1, 1, 1, 0, 0, 1, 1, ...
0, 0, 1, 1, 2, 1, 2, 1, 1, 1, 2, 1, ...
-1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, ...
0, 1, 2, 1, 2, 1, 2, 2, 2, 1, 2, 1, ...
0, 1, 1, 1, 1, 1, 2, 2, 1, 1, 1, 1, ...
...
MATHEMATICA
a[n_, k_] := PrimePi[n] + PrimePi[k] - PrimePi[n+k]; Flatten[ Table[a[n-k, k], {n, 1, 15}, {k, 1, n-1}]] (* Jean-François Alcover, Jul 18 2012 *)
CROSSREFS
Cf. A000720, A212210-A212213, A060208, A047885, A047886. First row and column are -A010051.
Sequence in context: A047885 A072731 A221169 * A212213 A214339 A129174
KEYWORD
sign,tabl,nice
AUTHOR
N. J. A. Sloane, May 04 2012
STATUS
approved