[go: up one dir, main page]

login
A212210
Triangle read by rows: T(n,k) = pi(n) + pi(k) - pi(n+k), n >= 1, 1 <= k <= n, where pi() = A000720().
9
-1, -1, 0, 0, 0, 1, -1, 0, 0, 0, 0, 0, 1, 1, 2, -1, 0, 1, 1, 1, 1, 0, 1, 2, 1, 2, 1, 2, 0, 1, 1, 1, 1, 1, 2, 2, 0, 0, 1, 0, 1, 1, 2, 1, 1, -1, 0, 0, 0, 1, 1, 1, 1, 0, 0, 0, 0, 1, 1, 2, 1, 2, 1, 1, 1, 2, -1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 2, 1, 2, 1, 2, 2, 2, 1, 2, 2, 3, 0, 1, 1, 1, 1, 1, 2, 2, 1, 1, 2, 2, 3, 3
OFFSET
1,15
COMMENTS
It is conjectured that pi(x)+pi(y) >= pi(x+y) for 1 < y <= x.
A006093 gives row numbers of rows containing at least one negative term. [Reinhard Zumkeller, May 05 2012]
REFERENCES
D. S. Mitrinovic et al., Handbook of Number Theory, Kluwer, Section VII.5, p. 235.
LINKS
P. Erdos and J. L. Selfridge, Complete prime subsets of consecutive integers. Proceedings of the Manitoba Conference on Numerical Mathematics (Univ. Manitoba, Winnipeg, Man., 1971), pp. 1--14. Dept. Comput. Sci., Univ. Manitoba, Winnipeg, Man., 1971. MR0337828 (49 #2597).
EXAMPLE
Triangle begins:
-1
-1 0
0 0 1
-1 0 0 0
0 0 1 1 2
-1 0 1 1 1 1
0 1 2 1 2 1 2
0 1 1 1 1 1 2 2
0 0 1 0 1 1 2 1 1
-1 0 0 0 1 1 1 1 0 0
...
MATHEMATICA
t[n_, k_] := PrimePi[n] + PrimePi[k] - PrimePi[n + k]; Table[t[n, k], {n, 1, 14}, {k, 1, n}] // Flatten (* Jean-François Alcover, Oct 17 2012 *)
PROG
(Haskell)
import Data.List (inits, tails)
a212210 n k = a212210_tabl !! (n-1) !! (k-1)
a212210_row n = a212210_tabl !! (n-1)
a212210_tabl = f $ tail $ zip (inits pis) (tails pis) where
f ((xs, ys) : zss) = (zipWith (-) (map (+ last xs) (xs)) ys) : f zss
pis = a000720_list
-- Reinhard Zumkeller, May 04 2012
CROSSREFS
Left diagonal is -A010051.
Sequence in context: A375670 A339885 A106799 * A127499 A198068 A358194
KEYWORD
sign,tabl,nice
AUTHOR
N. J. A. Sloane, May 04 2012
STATUS
approved