Skip to main content
Yung-Huang  Chang

    Yung-Huang Chang

    Two-dimensional (2D) transition metal dichalcogenides (TMDs) have revealed many novel properties of interest to future device applications. In particular, the presence of grain boundaries (GBs) can significantly influence the material... more
    Two-dimensional (2D) transition metal dichalcogenides (TMDs) have revealed many novel properties of interest to future device applications. In particular, the presence of grain boundaries (GBs) can significantly influence the material properties of 2D TMDs. However, direct characterization of the electronic properties of the GB defects at the atomic scale remains extremely challenging. In this study, we employ scanning tunneling microscopy and spectroscopy to investigate the atomic and electronic structure of low-angle GBs of monolayer tungsten diselenide (WSe2) with misorientation angles of 3-6°. Butterfly features are observed along the GBs, with the periodicity depending on the misorientation angle. Density functional theory calculations show that these butterfly features correspond to gap states that arise in tetragonal dislocation cores and extend to distorted six-membered rings around the dislocation core. Understanding the nature of GB defects and their influence on transport...
    Impressive properties arise from the atomically thin nature of transition metal dichalcogenide two-dimensional materials. However, being atomically thin limits their optical absorption or emission. Hence, enhancing their photoluminescence... more
    Impressive properties arise from the atomically thin nature of transition metal dichalcogenide two-dimensional materials. However, being atomically thin limits their optical absorption or emission. Hence, enhancing their photoluminescence by plasmonic nanostructures is critical for integrating these materials in optoelectronic and photonic devices. Typical photoluminescence enhancement from transition metal dichalcogenides is 100-fold, with recent enhancement of 1,000-fold achieved by simultaneously enhancing absorption, emission and directionality of the system. By suspending WSe2 flakes onto sub-20-nm-wide trenches in gold substrate, we report a giant photoluminescence enhancement of ∼20,000-fold. It is attributed to an enhanced absorption of the pump laser due to the lateral gap plasmons confined in the trenches and the enhanced Purcell factor by the plasmonic nanostructure. This work demonstrates the feasibility of giant photoluminescence enhancement in WSe2 with judiciously des...
    The nature and extent of electronic screening at heterointerfaces and their consequences on energy level alignment are of profound importance in numerous applications, such as solar cells, electronics etc. The increasing availability of... more
    The nature and extent of electronic screening at heterointerfaces and their consequences on energy level alignment are of profound importance in numerous applications, such as solar cells, electronics etc. The increasing availability of two-dimensional (2D) transition metal dichalcogenides (TMDs) brings additional opportunities for them to be used as interlayers in "van der Waals (vdW) heterostructures" and organic/inorganic flexible devices. These innovations raise the question of the extent to which the 2D TMDs participate actively in dielectric screening at the interface. Here we study perylene-3,4,9,10-tetracarboxylic dianhydride (PTCDA) monolayers adsorbed on single-layer tungsten diselenide (WSe2), bare graphite and Au(111) surfaces, revealing a strong dependence of the PTCDA HOMO-LUMO gap on the electronic screening effects from the substrate. The monolayer WSe2 interlayer provides substantial - but not complete - screening at the organic/inorganic interface. Our re...
    Due to its high carrier mobility, broadband absorption, and fast response time, the semi-metallic graphene is attractive for optoelectronics. Another two-dimensional semiconducting material molybdenum disulfide (MoS2) is also known as... more
    Due to its high carrier mobility, broadband absorption, and fast response time, the semi-metallic graphene is attractive for optoelectronics. Another two-dimensional semiconducting material molybdenum disulfide (MoS2) is also known as light- sensitive. Here we show that a large-area and continuous MoS2 monolayer is achievable using a CVD method and graphene is transferable onto MoS2. We demonstrate that a photodetector based on the graphene/MoS2 heterostructure is able to provide a high photogain greater than 10(8). Our experiments show that the electron-hole pairs are produced in the MoS2 layer after light absorption and subsequently separated across the layers. Contradictory to the expectation based on the conventional built-in electric field model for metal-semiconductor contacts, photoelectrons are injected into the graphene layer rather than trapped in MoS2 due to the presence of a perpendicular effective electric field caused by the combination of the built-in electric field, ...
    Monolayer molybdenum disulfide (MoS2) has become a promising building block in optoelectronics for its high photosensitivity. However, sulfur vacancies and other defects significantly affect the electrical and optoelectronic properties of... more
    Monolayer molybdenum disulfide (MoS2) has become a promising building block in optoelectronics for its high photosensitivity. However, sulfur vacancies and other defects significantly affect the electrical and optoelectronic properties of monolayer MoS2 devices. Here, highly crystalline molybdenum diselenide (MoSe2) monolayers have been successfully synthesized by the chemical vapor deposition (CVD) method. Low-temperature photoluminescence comparison for MoS2 and MoSe2 monolayers reveals that the MoSe2 monolayer shows a much weaker bound exciton peak; hence, the phototransistor based on MoSe2 presents a much faster response time (<25 ms) than the corresponding 30 s for the CVD MoS2 monolayer at room temperature in ambient conditions. The images obtained from transmission electron microscopy indicate that the MoSe exhibits fewer defects than MoS2. This work provides the fundamental understanding for the differences in optoelectronic behaviors between MoSe2 and MoS2 and is useful ...
    The heterojunction effects of TiO2 nanotubes on photoconductive characteristics were investigated. For ITO/TiO2/Si diodes, the photocurrent is controlled either by the TiO2/Si heterojunction (p-n junction) or the ITO-TiO2 heterojunction... more
    The heterojunction effects of TiO2 nanotubes on photoconductive characteristics were investigated. For ITO/TiO2/Si diodes, the photocurrent is controlled either by the TiO2/Si heterojunction (p-n junction) or the ITO-TiO2 heterojunction (Schottky contact). In the short circuit (approximately 0 V) condition, the TiO2-Si heterojunction dominates the photocarrier transportation direction due to its larger space-charge region and potential gradient. The detailed transition process of the photocarrier direction was investigated with a time-dependent photoresponse study. The results showed that the diode transitioned from TiO2-Si heterojunction-controlled to ITO-TiO2 heterojunction-controlled as we applied biases from approximately 0 to -1 V on the ITO electrode.
    A 4 nm thin transition-metal dichalcogenide (TMD) body FinFET with back gate control is proposed and demonstrated for the first time. The TMD FinFET channel is deposited by CVD. Hydrogen plasma treatment of TMD is employed to lower the... more
    A 4 nm thin transition-metal dichalcogenide (TMD) body FinFET with back gate control is proposed and demonstrated for the first time. The TMD FinFET channel is deposited by CVD. Hydrogen plasma treatment of TMD is employed to lower the series resistance for the first time. The 2 nm thin back gate oxide enables 0.5 V of Vth shift with 1.2 V change in back bias for correcting device variations and dynamically configuring a device as a high performance or low leakage device. TMD can potentially provide sub-nm thin monolayer body needed for 2 nm node FinFET.