Skip to main content

    Peter Heutink

    Paragangliomas of the head and neck are slow growing tumors which rarely show malignant progression. Familial transmission has been described consistent with an autosomal dominant mode of inheritance. Clinical manifestations of hereditary... more
    Paragangliomas of the head and neck are slow growing tumors which rarely show malignant progression. Familial transmission has been described consistent with an autosomal dominant mode of inheritance. Clinical manifestations of hereditary paragangliomas are determined by the sex of the transmitting parent. All affected individuals have inherited the disease gene from their father, expression of the phenotype is not observed in the offspring of an affected female until subsequent transmittance of the gene through a male carrier. This finding strongly suggests that genomic imprinting is involved. We report the results of a linkage study on a large Dutch pedigree with hereditary paragangliomas. Highly significant evidence for genetic linkage to chromosome 11q23-qter with the anonymous DNA marker D11S147 was detected with a peak lod score of 6.0 at a recombination fraction theta = 0.0. Likelihood calculations yielded an odds ratio of 2.7 x 10(6) in favor of genomic imprinting versus the absence of genomic imprinting.
    The struggle to identify susceptibility genes for complex disorders has stimulated geneticists to develop new approaches. One approach that has gained considerable interest is to focus on genetically isolated populations rather than on... more
    The struggle to identify susceptibility genes for complex disorders has stimulated geneticists to develop new approaches. One approach that has gained considerable interest is to focus on genetically isolated populations rather than on the general population. There remains much controversy and theoretical debate over the feasibility and advantages of such populations, but recent results speak in favor of the feasibility
    Variation in human behavior may be caused by differences in genotype and by non-genetic differences ("environment") between individuals. The relative contributions of genotype (G) and environment (E) to phenotypic variation can... more
    Variation in human behavior may be caused by differences in genotype and by non-genetic differences ("environment") between individuals. The relative contributions of genotype (G) and environment (E) to phenotypic variation can be assessed with the classical twin design. We illustrate this approach with longitudinal data collected in 5 and 12-year-old Dutch twins. At age 5 data on cognitive abilities as assessed with a standard intelligence test (IQ), working memory, selective and sustained attention, and attention problems were collected in 237 twin pairs. Seven years later, 172 twin pairs participated again when they were 12 years old and underwent a similar protocol. Results showed that variation in all phenotypes was influenced by genetic factors. For IQ the heritability estimates increased from 30% at age 5, to 80% at age 12. For executive functioning performance genetic factors accounted for around 50% of the variance at both ages. Attention problems showed high heri...
    Small-vessel diseases of the brain underlie 20 to 30 percent of ischemic strokes and a larger proportion of intracerebral hemorrhages. In this report, we show that a mutation in the mouse Col4a1 gene, encoding procollagen type IV alpha1,... more
    Small-vessel diseases of the brain underlie 20 to 30 percent of ischemic strokes and a larger proportion of intracerebral hemorrhages. In this report, we show that a mutation in the mouse Col4a1 gene, encoding procollagen type IV alpha1, predisposes both newborn and adult mice to intracerebral hemorrhage. Surgical delivery of mutant mice alleviated birth-associated trauma and hemorrhage. We identified a
    Recent studies have made great strides towards identifying putative genetic events underlying the evolution of the human brain and its emergent cognitive capacities. One of the most intriguing findings is the recurrent identification of... more
    Recent studies have made great strides towards identifying putative genetic events underlying the evolution of the human brain and its emergent cognitive capacities. One of the most intriguing findings is the recurrent identification of adaptive evolution in genes associated with primary microcephaly, a developmental dis- order characterized by severe reduction in brain size and intelligence, reminiscent of the early hominid
    The mouse and human brain express a large number of noncoding RNAs (ncRNAs). Some of these are known to participate in neural progenitor cell fate determination, cell differentiation, neuronal and synaptic plasticity and transposable... more
    The mouse and human brain express a large number of noncoding RNAs (ncRNAs). Some of these are known to participate in neural progenitor cell fate determination, cell differentiation, neuronal and synaptic plasticity and transposable elements derived ncRNAs contribute to somatic variation. Dysregulation of specific long ncRNAs (lncRNAs) has been shown in neuro-developmental and neuro-degenerative diseases thus highlighting the importance of lncRNAs in brain function. Even though it is known that lncRNAs are expressed in cells at low levels in a tissue-specific manner, bioinformatics analyses of brain-specific ncRNAs has not been performed. We analyzed previously published custom microarray ncRNA expression data generated from twelve human tissues to identify tissue-specific ncRNAs. We find that among the 12 tissues studied, brain has the largest number of ncRNAs. Our analyses show that genes in the vicinity of brain-specific ncRNAs are significantly up regulated in the brain. Investigations of repeat representation show that brain-specific ncRNAs are significantly more likely to originate in repeat regions especially DNA/TcMar-Tigger compared with non-tissue-specific ncRNAs. We find SINE/Alus depleted from brain-specific dataset when compared with non-tissue-specific ncRNAs. Our data provide a bioinformatics comparison between brain-specific and non tissue-specific ncRNAs. This article is part of a Directed Issue entitled: The Non-coding RNA Revolution.
    Thirteen families have been described with an autosomal dominantly inherited dementia named frontotemporal dementia and parkinsonism linked to chromosome 17 (FTDP-17), historically termed... more
    Thirteen families have been described with an autosomal dominantly inherited dementia named frontotemporal dementia and parkinsonism linked to chromosome 17 (FTDP-17), historically termed Pick's disease. Most FTDP-17 cases show neuronal and/or glial inclusions that stain positively with antibodies raised against the microtubule-associated protein Tau, although the Tau pathology varies considerably in both its quantity (or severity) and characteristics. Previous studies have mapped the FTDP-17 locus to a 2-centimorgan region on chromosome 17q21.11; the tau gene also lies within this region. We have now sequenced tau in FTDP-17 families and identified three missense mutations (G272V, P301L and R406W) and three mutations in the 5' splice site of exon 10. The splice-site mutations all destabilize a potential stem-loop structure which is probably involved in regulating the alternative splicing of exon10. This causes more frequent usage of the 5' splice site and an increased proportion of tau transcripts that include exon 10. The increase in exon 10+ messenger RNA will increase the proportion of Tau containing four microtubule-binding repeats, which is consistent with the neuropathology described in several families with FTDP-17.
    We conducted a meta-analysis of Parkinson's disease genome-wide association studies using a common set of 7,893,274 variants across 13,708 cases and 95,282 controls. Twenty-six loci were identified as having genome-wide significant... more
    We conducted a meta-analysis of Parkinson's disease genome-wide association studies using a common set of 7,893,274 variants across 13,708 cases and 95,282 controls. Twenty-six loci were identified as having genome-wide significant association; these and 6 additional previously reported loci were then tested in an independent set of 5,353 cases and 5,551 controls. Of the 32 tested SNPs, 24 replicated, including 6 newly identified loci. Conditional analyses within loci showed that four loci, including GBA, GAK-DGKQ, SNCA and the HLA region, contain a secondary independent risk variant. In total, we identified and replicated 28 independent risk variants for Parkinson's disease across 24 loci. Although the effect of each individual locus was small, risk profile analysis showed substantial cumulative risk in a comparison of the highest and lowest quintiles of genetic risk (odds ratio…
    The physiological function of Ataxin-3 (ATXN3), a deubiquitylase (DUB) involved in Machado-Joseph Disease (MJD), remains elusive. In this study, we demonstrate that ATXN3 is required for neuronal differentiation and for normal cell... more
    The physiological function of Ataxin-3 (ATXN3), a deubiquitylase (DUB) involved in Machado-Joseph Disease (MJD), remains elusive. In this study, we demonstrate that ATXN3 is required for neuronal differentiation and for normal cell morphology, cytoskeletal organization, proliferation and survival of SH-SY5Y and PC12 cells. This cellular phenotype is associated with increased proteasomal degradation of α5 integrin subunit (ITGA5) and reduced activation of integrin signalling and is rescued by ITGA5 overexpression. Interestingly, silencing of ATXN3, overexpression of mutant versions of ATXN3 lacking catalytic activity or bearing an expanded polyglutamine (polyQ) tract led to partially overlapping phenotypes. In vivo analysis showed that both Atxn3 knockout and MJD transgenic mice had decreased levels of ITGA5 in the brain. Furthermore, abnormal morphology and reduced branching were observed both in cultured neurons expressing shRNA for ATXN3 and in those obtained from MJD mice. Our re...
    Obsessive-compulsive disorder (OCD) and Tourette syndrome (TS) are heritable neurodevelopmental disorders with a partially shared genetic etiology. This study represents the first genome-wide investigation of large (>500 kb), rare... more
    Obsessive-compulsive disorder (OCD) and Tourette syndrome (TS) are heritable neurodevelopmental disorders with a partially shared genetic etiology. This study represents the first genome-wide investigation of large (>500 kb), rare (<1%) copy number variants (CNVs) in OCD and the largest genome-wide CNV analysis in TS to date. The primary analyses used a cross-disorder design for 2,699 case patients (1,613 ascertained for OCD, 1,086 ascertained for TS) and 1,789 controls. Parental data facilitated a de novo analysis in 348 OCD trios. Although no global CNV burden was detected in the cross-disorder analysis or in secondary, disease-specific analyses, there was a 3.3-fold increased burden of large deletions previously associated with other neurodevelopmental disorders (p = .09). Half of these neurodevelopmental deletions were located in a single locus, 16p13.11 (5 case patient deletions: 0 control deletions, p = .08 in the current study, p = .025 compared to published controls). ...
    The human genome encodes a limited number of genes yet contributes to individual differences in a vast array of heritable traits. A possible explanation for the capacity our genome to generate this virtually unlimited range of phenotypic... more
    The human genome encodes a limited number of genes yet contributes to individual differences in a vast array of heritable traits. A possible explanation for the capacity our genome to generate this virtually unlimited range of phenotypic variation in complex traits is to assume functional interactions between genes. Therefore we searched two mammalian genomes to identify potential epistatic interactions by looking for co-adapted genes marked by excess two-locus genetic differentiation between populations/lineages using publicly available SNP genotype data. The practical motivation for this effort is to reduce the number of pair-wise tests that need to be performed in genome-wide association studies aimed at detecting G6G interactions, by focusing on pairs predicted to be more likely to jointly affect variation in complex traits. Hence, this approach generates a list of candidate interactions that can be empirically tested. In both the mouse and human data we observed two-locus genet...
    Mutations in coding exons or exon 10 5'-splice-site of the gene for microtubule-associated protein tau can cause chromosome 17-linked frontotemporal dementia and parkinsonism (FTDP-17). We sequenced the 11 coding... more
    Mutations in coding exons or exon 10 5'-splice-site of the gene for microtubule-associated protein tau can cause chromosome 17-linked frontotemporal dementia and parkinsonism (FTDP-17). We sequenced the 11 coding exons plus exon-intron boundaries of the tau gene in 15 cases of progressive supranuclear palsy (PSP), and found no mutations in coding exons or exon ten 5'-splice sites. These data indicate that typical PSP is not associated with tau gene mutations similar to those causing FTDP-17. We also observed a +39deltaG base change in the intron following exon 4 in three out of 69 PSP cases (all three Italians), whereas it was not found in 150 Dutch controls and once in 112 Italian controls. The +39deltaG variant arose in the context of the PSP-associated tau H1 haplotype. Although a pathogenic role cannot be entirely excluded, +39deltaG is likely to be a rare polymorphism that may be in linkage disequilibrium with a biologically relevant locus inside or near to the tau gene.
    For more than a decade, researchers have refined criteria for the diagnosis of dementia with Lewy bodies (DLB) and at the same time have recognized that cognitive impairment and dementia occur commonly in patients with Parkinson disease... more
    For more than a decade, researchers have refined criteria for the diagnosis of dementia with Lewy bodies (DLB) and at the same time have recognized that cognitive impairment and dementia occur commonly in patients with Parkinson disease (PD). This article addresses the relationship between DLB, PD, and PD with dementia (PDD). The authors agreed to endorse "Lewy body disorders" as the umbrella term for PD, PDD, and DLB, to promote the continued practical use of these three clinical terms, and to encourage efforts at drug discovery that target the mechanisms of neurodegeneration shared by these disorders of alpha-synuclein metabolism. We concluded that the differing temporal sequence of symptoms and clinical features of PDD and DLB justify distinguishing these disorders. However, a single Lewy body disorder model was deemed more useful for studying disease pathogenesis because abnormal neuronal alpha-synuclein inclusions are the defining pathologic process common to both PDD and DLB. There was consensus that improved understanding of the pathobiology of alpha-synuclein should be a major focus of efforts to develop new disease-modifying therapies for these disorders. The group agreed on four important priorities: 1) continued communication between experts who specialize in PDD or DLB; 2) initiation of prospective validation studies with autopsy confirmation of DLB and PDD; 3) development of practical biomarkers for alpha-synuclein pathologies; 4) accelerated efforts to find more effective treatments for these diseases.
    Regulated transcription controls the diversity, developmental pathways and spatial organization of the hundreds of cell types that make up a mammal. Using single-molecule cDNA sequencing, we mapped transcription start sites (TSSs) and... more
    Regulated transcription controls the diversity, developmental pathways and spatial organization of the hundreds of cell types that make up a mammal. Using single-molecule cDNA sequencing, we mapped transcription start sites (TSSs) and their usage in human and mouse primary cells, cell lines and tissues to produce a comprehensive overview of mammalian gene expression across the human body. We find that few genes are truly…
    Enhancers control the correct temporal and cell-type-specific activation of gene expression in multicellular eukaryotes. Knowing their properties, regulatory activity and targets is crucial to understand the regulation of differentiation... more
    Enhancers control the correct temporal and cell-type-specific activation of gene expression in multicellular eukaryotes. Knowing their properties, regulatory activity and targets is crucial to understand the regulation of differentiation and homeostasis. Here we use the FANTOM5 panel of samples, covering the majority of human tissues and cell types, to produce an atlas of active, in vivo-transcribed enhancers. We show that enhancers share properties with CpG-poor messenger RNA promoters but produce bidirectional, exosome-sensitive, relatively short unspliced RNAs, the generation of which is strongly related to enhancer activity. The atlas is used to compare regulatory programs between different cells at unprecedented depth, to identify disease-associated regulatory single nucleotide polymorphisms, and to classify cell-type-specific and ubiquitous enhancers. We further explore the utility of enhancer redundancy, which explains gene expression strength rather than expression patterns. The online FANTOM5 enhancer atlas represents a unique resource for studies on cell-type-specific enhancers and gene regulation.

    And 41 more