Simulation of Land Use Based on Multiple Models in the Western Sichuan Plateau
<p>Geographical location of the study area. Map of China and Tibetan Plateau from the Resource and Environment Science and Data Center of the Chinese Academy of Sciences.</p> "> Figure 2
<p>Technical route.</p> "> Figure 3
<p>Driving factors of LUCC.</p> "> Figure 4
<p>(<b>a</b>) LUCC in actual 2020, (<b>b</b>) LUCC simulated by CA-Markov model, (<b>c</b>) LUCC simulated by LCM, (<b>d</b>) LUCC simulated by PLUS model.</p> "> Figure 5
<p>The simulated LUCC in four sub-regions in the study area are compared using the CA-Markov model, LCM, and PLUS model. The explanation for colored areas in the figure is listed in <a href="#remotesensing-15-03629-f004" class="html-fig">Figure 4</a>.</p> "> Figure 6
<p>Percentage of the spatial consistency area of each land type. Full names of abbreviations are listed in <a href="#remotesensing-15-03629-t002" class="html-table">Table 2</a>.</p> "> Figure 7
<p>Comparison of spatial consistency between the overall and selected C, F and GL.</p> "> Figure 8
<p>LUCC forecast map in 2070.</p> "> Figure 9
<p>Sandy map of land use transfer in the Western Sichuan Plateau from 2020 to 2070.</p> "> Figure A1
<p>The contribution rate of influence factors to each land type. (<b>a</b>–<b>i</b>): C, F, GL, SL, WL, WB, IS, BA, PIS. Full names of abbreviations are listed in <a href="#remotesensing-15-03629-t002" class="html-table">Table 2</a> and <a href="#remotesensing-15-03629-t0A1" class="html-table">Table A1</a>.</p> "> Figure A2
<p>PA (<b>left</b>) and UA (<b>right</b>) for different classes in different models in 2020. Full names of abbreviations are listed in <a href="#remotesensing-15-03629-t002" class="html-table">Table 2</a>.</p> ">
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Technical Route
2.3. Data Source
2.4. LULC Simulation Model
2.4.1. CA-Markov Model
2.4.2. Land Change Modeler (LCM)
2.4.3. PLUS Model
2.4.4. Model Validation
2.4.5. Landscape Pattern Analysis
3. Results
3.1. Comparison of Simulation Results of Different Models
3.2. Comparison of Spatial Consistency of Different Models
3.3. Accuracy Verification
3.4. Predicting Future LUCC
3.4.1. Future LUCC Forecast Analysis
3.4.2. Analysis of Landscape Pattern Change
4. Discussion
4.1. Model Analysis
4.2. Predicting Future LUCC
4.3. Disadvantages and Limitations
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
IF | Index | F | GL | SL | WL | WB | IS | BA | PIS |
---|---|---|---|---|---|---|---|---|---|
DEM | β | - | - | 0.00037 | - | - | - | 0.00016 | −0.00023 |
exp(β) | - | - | 1.00037 | - | - | - | 1.00016 | 0.99977 | |
Slope | β | 0.01703 | −0.01698 | - | 0.04955 | - | - | 0.00681 | 0.01875 |
exp(β) | 1.01718 | 0.98316 | - | 1.05080 | - | - | 1.00683 | 1.01893 | |
Aspect | β | - | - | −0.00171 | - | - | - | - | - |
exp(β) | - | - | 0.99829 | - | - | - | - | - | |
Dis1 | β | −0.00002 | 0.00001 | 0.00025 | 0.00032 | −0.00032 | −0.00291 | 0.00028 | 0.00060 |
exp(β) | 0.99998 | 1.00001 | 1.00025 | 1.00032 | 0.99968 | 0.99709 | 1.00028 | 1.00060 | |
Dis2 | β | −0.00005 | 0.00005 | - | 0.00006 | −0.00003 | −0.00082 | - | 0.00003 |
exp(β) | 0.99995 | 1.00005 | - | 1.00006 | 0.99998 | 0.99919 | - | 1.00003 | |
Dis3 | β | 0.00000 | 0.00000 | 0.00000 | −0.00001 | 0.00000 | −0.00001 | 0.00001 | 0.00000 |
exp(β) | 1.00000 | 1.00000 | 1.00000 | 0.99999 | 1.00000 | 1.00000 | 1.00001 | 1.00000 | |
Dis4 | β | −0.00006 | 0.00006 | 0.00005 | - | 0.00006 | −0.00040 | 0.00015 | 0.00019 |
exp(β) | 0.99994 | 1.00006 | 1.00005 | - | 1.00006 | 0.99960 | 1.00015 | 1.00019 | |
PD | β | 0.03696 | −0.05085 | - | 0.07230 | 0.04630 | - | 0.02854 | 0.07462 |
exp(β) | 1.03765 | 0.95042 | - | 1.07498 | 1.04739 | - | 1.02895 | 1.07748 | |
GDP | β | −0.00003 | 0.00003 | - | - | 0.00002 | - | −0.00020 | −0.00013 |
exp(β) | 0.99997 | 1.00003 | - | - | 1.00002 | - | 0.99980 | 0.99987 | |
Constant | β | 0.55677 | −0.51204 | −2.62761 | −1.49221 | −0.51878 | 5.96395 | −5.06016 | −4.48808 |
exp(β) | 1.74502 | 0.59927 | 0.07225 | 0.22488 | 0.59525 | 389.14307 | 0.00635 | 0.01124 |
C | F | GL | SL | WL | WB | IS | BA | PIS | |
---|---|---|---|---|---|---|---|---|---|
C | 0.9875 | 0.0030 | 0.0056 | 0 | 0 | 0.0004 | 0.0034 | 0.0001 | 0 |
F | 0.0001 | 0.9857 | 0.0139 | 0 | 0 | 0.0001 | 0.0001 | 0.0001 | 0 |
GL | 0.0002 | 0.0090 | 0.9893 | 0.0001 | 0 | 0.0001 | 0.0002 | 0.0010 | 0.0001 |
SL | 0 | 0.1667 | 0.1242 | 0.6863 | 0 | 0 | 0 | 0.0065 | 0.0163 |
WL | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 |
WB | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 |
IS | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 |
BA | 0 | 0.0038 | 0.2560 | 0.0155 | 0 | 0.0345 | 0 | 0.6625 | 0.0276 |
PIS | 0 | 0.0014 | 0.0416 | 0.0007 | 0 | 0.0068 | 0 | 0.0228 | 0.9267 |
References
- Steffen, W.; Sanderson, A.; Tyson, P.; Jäger, J.; Matson, P.; Moore, B.; Oldfield, F.; Richardson, K.; Schellnhuber, H.J.; Turner, B.L.; et al. Global Change and the Earth System: A Planet Under Pressure; Springer: Berlin/Heidelberg, Germany, 2005. [Google Scholar]
- Zhang, H.; Zhang, B. A review of international land use/cover change modeling studies. J. Nat. Resour. 2005, 20, 422–431. [Google Scholar]
- Dai, E.; Ma, L. A Review of Land Change Modeling Methods. Prog. Geogr. 2018, 37, 152–162. [Google Scholar] [CrossRef] [Green Version]
- Veldkamp, A.; Lambinb, E.F. Predicting land-use change. Agric. Ecosyst. Environ. 2001, 85, 1–6. [Google Scholar] [CrossRef]
- Jiao, M.; Hu, M.; Xia, B. Spatiotemporal dynamic simulation of land-use and landscape-pattern in the Pearl River Delta, China. Sustain. Cities Soc. 2019, 49, 101581. [Google Scholar] [CrossRef]
- López, E.; Bocco, G.; Mendoza, M.; Duhau, E. Predicting land-cover and land-use change in the urban fringe: A case in Morelia city, Mexico. Landsc. Urban Plan. 2001, 55, 271–285. [Google Scholar] [CrossRef]
- Geng, B.; Zheng, X.; Fu, M. Scenario analysis of sustainable intensive land use based on SD model. Sustain. Cities Soc. 2017, 29, 193–202. [Google Scholar] [CrossRef]
- Liu, X.; Ou, J.; Li, X.; Ai, B. Combining system dynamics and hybrid particle swarm optimization for land use allocation. Ecol. Model. 2013, 257, 11–24. [Google Scholar] [CrossRef]
- Baker, W.L. A review of models of landscape change. Landsc. Ecol. 1989, 2, 111–133. [Google Scholar] [CrossRef]
- Yu, D.; Procopio, N.A.; Fang, C. Simulating the Changes of Invasive Phragmites australis in a Pristine Wetland Complex with a Grey System Coupled System Dynamic Model: A Remote Sensing Practice. Remote Sens. 2022, 14, 3886. [Google Scholar] [CrossRef]
- Huang, Z.; Li, X.; Du, H.; Mao, F.; Han, N.; Fan, W.; Xu, Y.; Luo, X. Simulating Future LUCC by Coupling Climate Change and Human Effects Based on Multi-Phase Remote Sensing Data. Remote Sens. 2022, 14, 1698. [Google Scholar] [CrossRef]
- Gomes, E.; Inácio, M.; Bogdzevič, K.; Kalinauskas, M.; Karnauskaitė, D.; Pereira, P. Future land-use changes and its impacts on terrestrial ecosystem services: A review. Sci. Total Environ. 2021, 781, 146716. [Google Scholar] [CrossRef]
- Verburg, P.H.; Soepboer, W.; Veldkamp, A.; Limpiada, R.; Espaldon, V.; Mastura, S.S.A. Modeling the spatial dynamics of regional land use: The CLUE-S model. Environ. Manag. 2002, 30, 391–405. [Google Scholar] [CrossRef]
- Hao, L.; He, S.; Zhou, J.; Zhao, Q.; Lu, X. Prediction of the landscape pattern of the Yancheng Coastal Wetland, China, based on XGBoost and the MCE-CA-Markov model. Ecol. Indic. 2022, 145, 109735. [Google Scholar] [CrossRef]
- Wei, Q.; Abudureheman, M.; Halike, A.; Yao, K.; Yao, L.; Tang, H.; Tuheti, B. Temporal and spatial variation analysis of habitat quality on the PLUS-InVEST model for Ebinur Lake Basin, China. Ecol. Indic. 2022, 145, 109632. [Google Scholar] [CrossRef]
- Wang, Z.; Song, W.; Yin, L. Responses in ecosystem services to projected land cover changes on the Tibetan Plateau. Ecol. Indic. 2022, 142, 109228. [Google Scholar] [CrossRef]
- Liu, D.; Zhenga, X.; Wang, H. Land-use Simulation and Decision-Support system (LandSDS)_ Seamlessly integrating system dynamics, agent-based model, and cellular automata. Ecol. Model. 2020, 417, 108924. [Google Scholar] [CrossRef]
- Bao, S.; Yang, F. Spatio-Temporal Dynamic of the Land Use/Cover Change and Scenario Simulation in the Southeast Coastal Shelterbelt System Construction Project Region of China. Sustainability 2022, 14, 8952. [Google Scholar] [CrossRef]
- Zhang, P.; Liu, L.; Yang, L.; Zhao, J.; Li, Y.; Qi, Y.; Ma, X.; Cao, L. Exploring the response of ecosystem service value to land use changes under multiple scenarios coupling a mixed-cell cellular automata model and system dynamics model in Xi’an, China. Ecol. Indic. 2023, 147, 110009. [Google Scholar] [CrossRef]
- Chen, Z.; Huang, M.; Zhu, D.; Altan, O. Integrating Remote Sensing and a Markov-FLUS Model to Simulate Future Land Use Changes in Hokkaido, Japan. Remote Sens. 2021, 13, 2621. [Google Scholar] [CrossRef]
- Fu, F.; Deng, S.; Wu, D.; Liu, W.; Bai, Z. Research on the spatiotemporal evolution of land use landscape pattern in a county area based on CA-Markov model. Sustain. Cities Soc. 2022, 80, 103760. [Google Scholar] [CrossRef]
- Motlagh, S.K.; Sadoddin, A.; Haghnegahdar, A.; Razavi, S.; Salmanmahiny, A.; Ghorbani, K. Analysis and prediction of land cover changes using the land change modeler (LCM) in a semiarid river basin, Iran. Land Degrad. Dev. 2021, 32, 3092–3105. [Google Scholar] [CrossRef]
- Gao, L.; Tao, F.; Liu, R.; Wang, Z.; Leng, H.; Zhou, T. Multi-scenario simulation and ecological risk analysis of land use based on the PLUS model: A case study of Nanjing. Sustain. Cities Soc. 2022, 85, 104055. [Google Scholar] [CrossRef]
- Wei, J.; Hu, A.; Gan, X.; Zhao, X.; Huang, Y. Spatial and Temporal Characteristics of Ecosystem Service Trade-Off and Synergy Relationships in the Western Sichuan Plateau, China. Forests 2022, 13, 1845. [Google Scholar] [CrossRef]
- Li, W.; Xiang, M.; Duan, L.; Liu, Y.; Yang, X.; Mei, H.; Wei, Y.; Zhang, J.; Deng, L. Simulation of land utilization change and ecosystem service value evolution in Tibetan area of Sichuan Province. Alex. Eng. J. 2023, 70, 13–23. [Google Scholar] [CrossRef]
- Xiang, M.; Yang, J.; Li, W.; Song, Y.; Wang, C.; Liu, Y.; Liu, M.; Tan, Y. Spatiotemporal Evolution and Simulation Prediction of Ecosystem Service Function in the Western Sichuan Plateau Based on Land Use Changes. Front. Environ. Sci. 2022, 10, 391. [Google Scholar] [CrossRef]
- Zhang, X.; Liu, L.; Chen, X.; Gao, Y.; Xie, S.; Mi, J. GLC_FCS30: Global land-cover product with fine classification system at 30 m using time-series Landsat imagery. Earth Syst. Sci. Data 2021, 13, 2753–2776. [Google Scholar] [CrossRef]
- Ou, D.; Zhang, Q.; Tang, H.; Qin, J.; Yu, D.; Deng, O.; Gao, X.; Liu, T. Ecological spatial intensive use optimization modeling with framework of cellular automata for coordinating ecological protection and economic development. Sci. Total Environ. 2023, 857, 159319. [Google Scholar] [CrossRef]
- Guan, D.; Zhao, Z.; Tan, J. Dynamic simulation of land use change based on logistic-CA-Markov and WLC-CA-Markov models. Environ. Sci. Pollut. Res. 2019, 26, 20669–20688. [Google Scholar] [CrossRef]
- Eastman, J.R.; Toledano, J. A short presentation of the Land Change Modeler (LCM). In Geomatic Approaches for Modeling Land Change Scenarios; Springer: Berlin/Heidelberg, Germany, 2018; pp. 499–505. [Google Scholar] [CrossRef]
- Mas, J.-F.; Kolb, M.; Paegelow, M.; Olmedo, M.T.C.; Houet, T. Modelling Land use/cover changes: A comparison of conceptual approaches and softwares. Environ. Model. Softw. 2014, 51, 94–111. [Google Scholar] [CrossRef] [Green Version]
- Ansari, A.; Golabi, M.H. Prediction of spatial land use changes based on LCM in a GIS environment for Desert Wetlands—A case study: Meighan Wetland, Iran. Int. Soil Water Conserv. Res. 2019, 7, 64–70. [Google Scholar] [CrossRef]
- Liang, X.; Guan, Q.; Clarke, K.C.; Liu, S.; Wang, B.; Yao, Y. Understanding the drivers of sustainable land expansion using a patch-generating land use simulation (PLUS) model: A case study in Wuhan, China. Comput. Environ. Urban Syst. 2021, 85, 101569. [Google Scholar] [CrossRef]
- Deng, Z.; Quan, B. Intensity Characteristics and Multi-Scenario Projection of Land Use and Land Cover Change in Hengyang, China. Int. J. Environ. Res. Public Health 2022, 19, 8491. [Google Scholar] [CrossRef] [PubMed]
- Cohen, J. A coefficient of agreement for nominal scales. Educ. Psychol. Meas. 1960, 20, 37–46. [Google Scholar] [CrossRef]
- Jafari, R.; Abedi, M. Remote sensing-based biological and nonbiological indices for evaluating desertification in Iran: Image versus field indices. Land Degrad. Dev. 2021, 32, 2805–2822. [Google Scholar] [CrossRef]
- Pontius, R.G., Jr.; Boersma, W.; Castella, J.-C.; Clarke, K.; de Nijs, T.; Dietzel, C.; Duan, Z.; Fotsing, E.; Goldstein, N.; Kok, K.; et al. Comparing the input, output, and validation maps for several models of land chang. Ann. Reg. Sci. 2008, 42, 11–37. [Google Scholar] [CrossRef] [Green Version]
- Qian, Y.; Xing, W.; Guan, X.; Yang, T.; Wu, H. Coupling cellular automata with area partitioning and spatiotemporal convolution for dynamic land use change simulation. Sci. Total Environ. 2020, 722, 137738. [Google Scholar] [CrossRef]
- Marzialetti, F.; Gamba, P.; Sorriso, A.; Carranza, M.L. Monitoring Urban Expansion by Coupling Multi-Temporal Active Remote Sensing and Landscape Analysis: Changes in the Metropolitan Area of Cordoba (Argentina) from 2010 to 2021. Remote Sens. 2023, 15, 336. [Google Scholar] [CrossRef]
- Sun, L.; Schulz, K. The Improvement of Land Cover Classification by Thermal Remote Sensing. Remote Sens. 2015, 7, 8368–8390. [Google Scholar] [CrossRef] [Green Version]
- Senf, C.; Leitão, P.J.; Pflugmacher, D.; Linden, S.V.D.; Hostert, P. Mapping land cover in complex Mediterranean landscapes using Landsat: Improved classification accuracies from integrating multi-seasonal and synthetic imagery. Remote Sens. Environ. 2015, 156, 527–536. [Google Scholar] [CrossRef]
- Griffith, J.A. The role of landscape pattern analysis in understanding concepts of land cover change. J. Geogr. Sci. 2004, 14, 3–17. [Google Scholar] [CrossRef]
- Rutledge, D. Landscape Indices as Measures of the Effects of Fragmentation: Can Pattern Reflect Process? DOC Science Internal Series; Department of Conservation: Wellington, New Zealand, 2003.
- Haines-Young, R.; Chopping, M. Quantifying landscape structure: A review of landscape indices and their application to forested landscapes. Prog. Phys. Geogr. Earth Environ. 1996, 20, 418–445. [Google Scholar] [CrossRef]
- Mansour, S.; Al-Belushi, M.; Al-Awadhi, T. Monitoring land use and land cover changes in the mountainous cities of Oman using GIS and CA-Markov modelling techniques. Land Use Policy 2020, 91, 104414. [Google Scholar] [CrossRef]
- Wang, Q.; Wang, H. An integrated approach of logistic-MCE-CA-Markov to predict the land use structure and their micro-spatial characteristics analysis in Wuhan metropolitan area, Central China. Environ. Sci. Pollut. Res. 2022, 29, 30030–30053. [Google Scholar] [CrossRef] [PubMed]
- Sahle, M.; Saito, O.; Fürst, C.; Demissew, S.; Yeshitela, K. Future land use management effects on ecosystem services under different scenarios in the Wabe River catchment of Gurage Mountain chain landscape, Ethiopia. Sustain. Sci. 2018, 14, 175–190. [Google Scholar] [CrossRef]
- Arsanjani, J.J.; Helbich, M.; Kainz, W.; Boloorani, A.D. Integration of logistic regression, Markov chain and cellular automata models to simulate urban expansion. Int. J. Appl. Earth Obs. Geoinf. 2013, 21, 265–275. [Google Scholar] [CrossRef]
- Gaur, S.; Mittal, A.; Bandyopadhyay, A.; Holman, I.; Singh, R. Spatio-temporal analysis of land use and land cover change: A systematic model inter-comparison driven by integrated modelling techniques. Int. J. Remote Sens. 2010, 41, 9229–9255. [Google Scholar] [CrossRef]
- Shahi, E.; Karimi, S.; Jafari, H.R. Monitoring and modeling land use/cover changes in Arasbaran protected Area using and integrated Markov chain and artificial neural network. Model. Earth Syst. Environ. 2020, 6, 1901–1911. [Google Scholar] [CrossRef]
- Alqadhi, S.; Mallick, J.; Balha, A.; Bindajam, A.; Singh, C.K.; Hoa, P.V. Spatial and decadal prediction of land use/land cover using multi-layer perceptron-neural network (MLP-NN) algorithm for a semi-arid region of Asir, Saudi Arabia. Earth Sci. Inform. 2021, 14, 1547–1562. [Google Scholar] [CrossRef]
- Ma, G.; Li, Q.; Zhang, J.; Zhang, L.; Cheng, H.; Ju, Z.; Sun, G. Simulation and Analysis of Land-Use Change Based on the PLUS Model in the Fuxian Lake Basin (Yunnan–Guizhou Plateau, China). Land 2022, 12, 120. [Google Scholar] [CrossRef]
- Lin, Z.; Peng, S. Comparison of multimodel simulations of land use and land cover change considering integrated constraints—A case study of the Fuxian Lake basin. Ecol. Indic. 2022, 142, 109254. [Google Scholar] [CrossRef]
- Xu, L.; Liu, X.; De, T.; Liu, Z.; Yin, L.; Zheng, W. Forecasting Urban Land Use Change Based on Cellular Automata and the PLUS Model. Land 2022, 11, 652. [Google Scholar] [CrossRef]
- Luo, G.; Yin, C.; Chen, X.; Xu, W.; Lu, L. Combining system dynamic model and CLUE-S model to improve land use scenario analyses at regional scale: A case study of Sangong watershed in Xinjiang, China. Ecol. Complex. 2010, 7, 198–207. [Google Scholar] [CrossRef]
- Zhao, X.; Wang, P.; Gao, S.; Yasir, M.; Islam, Q.U. Combining LSTM and PLUS Models to Predict Future Urban Land Use and Land Cover Change: A Case in Dongying City, China. Remote Sens. 2023, 15, 2370. [Google Scholar] [CrossRef]
Data Type | Data Name | Data Source | Resolution |
---|---|---|---|
Natural factors | the LUCC data | GLC_FCS30 dataset | 30 m |
DEM | the Geospatial Data Cloud | 30 m | |
Slope | Calculated from DEM | 30 m | |
Aspect | |||
River | The National Catalogue Service For Geographic Information | - | |
Socioeconomic factors | Railway | The National Catalogue Service For Geographic Information | - |
Road | |||
Residential points | - | ||
Population density | The Resource and Environment Science and Data Center of the Chinese Academy of Sciences | 1000 m | |
GDP spatial distribution | 1000 m |
Land-Use Type | Area/ Proportion | Actual 2020 | CA-Markov | LCM | PLUS |
---|---|---|---|---|---|
C | Area/km2 | 2933.45 | 2784.23 | 2948.77 | 3142.64 |
Proportion/% | 1.19% | 1.13% | 1.20% | 1.28% | |
F | Area/km2 | 90,879.52 | 94,450.67 | 90,004.03 | 90,001.01 |
Proportion/% | 36.94% | 38.39% | 36.59% | 36.58% | |
GL | Area/km2 | 149,812.75 | 144,596.69 | 151,249.36 | 150,985.72 |
Proportion/% | 60.90% | 58.78% | 61.48% | 61.37% | |
SL | Area/km2 | 108.99 | 247.85 | 64.55 | 61.11 |
Proportion/% | 0.04% | 0.10% | 0.03% | 0.02% | |
WL | Area/km2 | 27.63 | 27.36 | 25.81 | 25.81 |
Proportion/% | 0.01% | 0.01% | 0.01% | 0.01% | |
WB | Area/km2 | 544.97 | 707.79 | 494.80 | 484.00 |
Proportion/% | 0.22% | 0.29% | 0.20% | 0.20% | |
IS | Area/km2 | 98.32 | 457.94 | 62.65 | 103.71 |
Proportion/% | 0.04% | 0.19% | 0.03% | 0.04% | |
BA | Area/km2 | 743.59 | 1997.69 | 520.65 | 506.41 |
Proportion/% | 0.30% | 0.81% | 0.21% | 0.21% | |
PIS | Area/km2 | 863.50 | 742.50 | 642.11 | 702.31 |
Proportion/% | 0.35% | 0.30% | 0.26% | 0.29% | |
Total | Area/km2 | 246,012.72 | 246,012.72 | 246,012.72 | 246,012.72 |
CA-Markov | LCM | PLUS | |
---|---|---|---|
Kappa | 0.76 | 0.93 | 0.89 |
OA | 0.88 | 0.97 | 0.94 |
FoM | 0.07 | 0.21 | 0.15 |
LUCC Type | Area/ Proportion | Actual 2020 | Simulation 2070 |
---|---|---|---|
C | Area/km2 | 2933.45 | 3070.63 |
Proportion/% | 1.19% | 1.29% | |
F | Area/km2 | 90,879.52 | 95,648.93 |
Proportion/% | 36.94% | 38.88% | |
GL | Area/km2 | 149,812.75 | 143,113.50 |
Proportion/% | 60.90% | 58.17% | |
SL | Area/km2 | 108.99 | 306.59 |
Proportion/% | 0.04% | 0.12% | |
WL | Area/km2 | 27.63 | 27.24 |
Proportion/% | 0.01% | 0.01% | |
WB | Area/km2 | 544.97 | 630.26 |
Proportion/% | 0.22% | 0.26% | |
IS | Area/km2 | 98.32 | 222.04 |
Proportion/% | 0.04% | 0.09% | |
BA | Area/km2 | 743.59 | 1102.98 |
Proportion/% | 0.30% | 0.45% | |
PIS | Area/km2 | 863.50 | 1790.55 |
Proportion/% | 0.35% | 0.73% | |
Total | Area/km2 | 246,012.72 | 246,012.72 |
Landscape Index | Year | C | F | GL | SL | WL | WB | IS | BA | PIS |
---|---|---|---|---|---|---|---|---|---|---|
NP (n) | 2020 | 8282 | 14,518 | 9450 | 455 | 119 | 1745 | 278 | 1656 | 838 |
2070 | 8732 | 13,580 | 6995 | 551 | 119 | 2255 | 328 | 1958 | 1440 | |
PD (n/100 ha) | 2020 | 0.0337 | 0.0590 | 0.0384 | 0.0018 | 0.0005 | 0.0071 | 0.0011 | 0.0067 | 0.0034 |
2070 | 0.0355 | 0.0552 | 0.0284 | 0.0022 | 0.0005 | 0.0092 | 0.0015 | 0.0080 | 0.0059 | |
LPI (%) | 2020 | 0.0199 | 24.7708 | 52.6044 | 0.0006 | 0.0004 | 0.0023 | 0.0026 | 0.0108 | 0.0485 |
2070 | 0.0199 | 23.4059 | 49.9947 | 0.0145 | 0.0004 | 0.0060 | 0.0026 | 0.0204 | 0.0841 | |
AI (%) | 2020 | 15.8997 | 73.2543 | 82.4134 | 5.4860 | 2.9046 | 12.1744 | 15.0485 | 22.4496 | 47.5178 |
2070 | 15.8870 | 76.0336 | 82.4636 | 40.3364 | 2.9046 | 17.1084 | 15.0485 | 25.9814 | 53.1743 |
Time | NP (n) | PD (n/100 ha) | LSI | CONTAG (%) | SHDI | SHEI | AI (%) |
---|---|---|---|---|---|---|---|
2020 | 37,341 | 0.1518 | 113.6849 | 68.1057 | 0.7974 | 0.3629 | 77.4706 |
2070 | 35,908 | 0.1459 | 110.7741 | 66.5422 | 0.8513 | 0.3874 | 78.0635 |
CA-Markov | LCM | PLUS | |
---|---|---|---|
Advantages | Simple algorithms; easy simulation process; easy to implement. | The MLP neural network can analyze the relationship between driving factors and LUCC, and generate a more accurate map of LUCC change potential. | Suitable for the evolution of patch-level LUCC; the contribution rate of influencing factors to different land expansions is provided. |
Disadvantages | The impact of socio-economic factors cannot be fully expressed; limitations of logistic model. | Complex algorithm and cumbersome to analyze. | Complex algorithms and deficiencies in long-term simulation compared to other models. |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yu, X.; Xiao, J.; Huang, K.; Li, Y.; Lin, Y.; Qi, G.; Liu, T.; Ren, P. Simulation of Land Use Based on Multiple Models in the Western Sichuan Plateau. Remote Sens. 2023, 15, 3629. https://doi.org/10.3390/rs15143629
Yu X, Xiao J, Huang K, Li Y, Lin Y, Qi G, Liu T, Ren P. Simulation of Land Use Based on Multiple Models in the Western Sichuan Plateau. Remote Sensing. 2023; 15(14):3629. https://doi.org/10.3390/rs15143629
Chicago/Turabian StyleYu, Xinran, Jiangtao Xiao, Ke Huang, Yuanyuan Li, Yang Lin, Gang Qi, Tao Liu, and Ping Ren. 2023. "Simulation of Land Use Based on Multiple Models in the Western Sichuan Plateau" Remote Sensing 15, no. 14: 3629. https://doi.org/10.3390/rs15143629