Monitoring Urban Expansion by Coupling Multi-Temporal Active Remote Sensing and Landscape Analysis: Changes in the Metropolitan Area of Cordoba (Argentina) from 2010 to 2021
<p>In red: the metropolitan area of Cordoba city (study area, reference system: WGS 84 UTM 20 S, epsg: 32720).</p> "> Figure 2
<p>Workflow describing the procedure followed to extract from SAR data the urban area extents over time, to detect urban changes, and to describe landscape composition and configuration over the last decade in the metropolitan area of Cordoba.</p> "> Figure 3
<p>Urban area extent maps (reference system: WGS84 UTM20 S, EPSG code: 32720) obtained by applying the UEXT algorithm to CSK data at T<sub>0</sub> (<b>a</b>), T<sub>1</sub> (<b>b</b>), T<sub>2</sub> (<b>c</b>), and T<sub>3</sub> (<b>d</b>).</p> "> Figure 4
<p>Urban expansion map summarizing changes that occurred during the entire timeframe 2010–2021 across the overall metropolitan area (<b>a</b>) and on two zoomed areas reporting examples of expansion processes. (<b>b</b>) <span class="html-italic">UrbExp<sub>T2</sub></span> (<b>c</b>) <span class="html-italic">UrbExp<sub>T3</sub></span>.</p> "> Figure 5
<p>Trajectory analysis on numbers (<b>a</b>) and Cartesian graphs (<b>b</b>–<b>d</b>) of urban expansion cells. (<b>a</b>) Table reporting the mean, upper (U. CI) and lower (L CI) confidence intervals of each landscape metric (PLAND: proportion of land covered by urban areas, AREA_MN: mean urban patch area, ED: edge density, PD: patch density) over time, with a, b indicating significant differences. (<b>b</b>–<b>d</b>) Cartesian relationship spaces reporting measured configuration metrics (grey dots) in relation to urban cover, along with the relative fitted curves (blue line) and the mean metric values (red dots) for each time step (T<sub>0</sub>, T<sub>1</sub>, T<sub>2</sub>, T<sub>3</sub>).</p> "> Figure 6
<p>(<b>a</b>) Number of urban expansion cells categorized by urban intensity classes over time. The boxplots report the percentage of landscape covered by built-up structures (PLAND) over time on cells labelled at T<sub>0</sub> on urban intensity classes. (<b>b</b>) Very Low, (<b>c</b>) Low, (<b>d</b>) Medium, and (<b>e</b>) High.</p> "> Figure 7
<p>Trajectory analysis for the different urban intensity classes defined at T<sub>0</sub>. Cartesian relationship spaces report measured configuration metrics (grey dots) in relation to urban cover, along with the relative fitted curves (blue line) and the mean metric values (colored dots) for each time step (T<sub>0</sub>, T<sub>1</sub>, T<sub>2</sub>, T<sub>3</sub>). PLAND: percent of urban area <span class="html-italic">vs.</span> (<b>a</b>) AREA_MN: Mean patch area, (<b>b</b>) ED: Edge density, and (<b>c</b>) PD: patch density.</p> ">
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Data Collection and Analysis
2.2.1. SAR Satellite Images Selection and Pre-Processing
2.2.2. Urban Area Extraction and Accuracy Assessment
- Urban seed selection: selection of a set of very likely urban pixels with very high backscatter values above a “seed threshold”.
- Region growing: delimitation of a growing region window of 3 km around each “seed threshold” and the addition inside it of further urban pixels to the original seed points. The addition of urban pixels was performed by a flooding algorithm computed by summing up pixels iteratively with high intensity values (≥“seed threshold”). This algorithm assumes that different man-made elements in an image are characterized by similar levels of backscattering. This iterative procedure is repeated as long as the cumulative sum of the urban pixels’ backscattered values results below the “urban threshold” value, which in this work is set to 1000 for Cosmo images of the first generation and to 800 for Cosmo images of the second generation.
- Post-processing: pixels located on too high slope values (above the “slope threshold” of 20 degrees) are discarded, as well as “salt and pepper” classification errors. The latter is carried out by means of a hole filling procedure using two morphological parameters: “minimum size settlements” and “size hole filling”. Both procedures aim at improving the mapping of built-up areas and the discrimination of built-up structures from parks, ponds, or bare soil.
2.2.3. Urban Expansion Detection and Accuracy
2.2.4. Urban Trajectory Analysis
- Urban expansion cells grid: the metropolitan area of Cordoba was subdivided into a regular square grid of 100 ha (Figure 2 box D.a). The use of a regular grid allows spatio-temporal information on a set of zones with the same size to be obtained, supporting statistical comparisons [70]. A 100 ha grid size can be considered an appropriate scale to analyze urban dynamics in a large city such as Cordoba [70]. For statistical analysis, only cells in which urban expansion (UrbExp) had been detected were considered.
- Urban intensity classes: The 100 ha selected UrbExp grid cells were classified according to their urban intensity in terms of soil sealing degree (Figure 2 box D.b) [71]. The Copernicus Urban Atlas classification scheme was adopted, because it is a standard frame for land monitoring in Europe (Copernicus Land Monitoring Service available at: https://www.eea.europa.eu/data-and-maps/data/copernicus-land-monitoring-service-urban-atlas (accessed on 24 October 2022)). We identified the following four urban intensity classes (see also Table S4): Very Low (soil sealing degree ≤ 10%), Low (10% < soil sealing degree ≤ 30%), Medium (30% < soil sealing degree ≤ 50%), High (soil sealing degree > 50%).
- Trajectory analysis: A set of four non-redundant landscape metrics (Figure 2 box D.c; Table 1) were selected to estimate landscape composition and configuration at each time step [72,73]. We computed for each UrbExp grid cell the percentage of landscape covered by built-up structures (PLAND); the patch density (PD), describing the number of urban patches per unit area; the edge density (ED), which measures overall shape complexity defined as the total edge length of urban patches per unit area; and the mean patch area (AREA_MN), which depicts the average extension of urban patches per unit area (Table 1) [74].
3. Results
3.1. Urban Area Extraction and Accuracy Assessment
3.2. Urban Expansion
3.3. Urban Trajectory Analysis
4. Discussion
4.1. Urban Extent Mapping by UEXT Algorithm
4.2. Detecting Urban Expansion
4.3. Trajectory Analysis and Urban Sustainability
4.4. Some Insight for Sustainable Planning
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Van Vliet, J. Direct and indirect loss of natural area from urban expansion. Nat. Sustain. 2019, 2, 755–763. [Google Scholar] [CrossRef]
- Buettner, T. Urban estimates and projections at the United Nations: The strengths, weakness, and underpinnings of the World Urbanization Prospects. Spat. Demogr. 2015, 3, 91–108. [Google Scholar] [CrossRef]
- Seto, K.C.; Güneralp, B.; Hutyra, L.R. Global forecasts of urban expansion to 2030 and direct impacts on biodiversity and carbon pools. Proc. Natl. Acad. Sci. USA 2012, 109, 16083–16088. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Marinelli, M.V.; Valente, D.; Scavuzzo, C.M.; Petrosillo, I. Landscape service flow dynamics in the metropolitan area of Córdoba (Argentina). J. Environ. Manag. 2021, 280, 111714. [Google Scholar] [CrossRef] [PubMed]
- Oudin, L.; Salavati, B.; Furusho-Percot, C.; Ribstein, P.; Saadi, M. Hydrological impacts of urbanization at the catchment scale. J. Hydrol. 2018, 559, 774–786. [Google Scholar] [CrossRef] [Green Version]
- Carranza, M.L.; Drius, M.; Malavasi, M.; Frate, L.; Stanisci, A.; Acosta, A.T.R. Assessing land take and its effects on dune carbon pools. An insight into the Mediterranean coastline. Ecol. Indic. 2018, 85, 951–955. [Google Scholar] [CrossRef]
- Fu, P.; Weng, Q. A time series analysis of urbanization induced land use and land cover change and its impact on land surface temperature with Landsat imagery. Remote Sens. Environ. 2016, 175, 205–214. [Google Scholar] [CrossRef]
- Carranza, M.L.; Drius, M.; Marzialetti, F.; Malavasi, M.; de Francesco, M.C.; Acosta, A.T.R.; Stanisci, A. Urban expansion depletes cultural ecosystem services: An insight into a Mediterranean coastline. Rend. Lincei. Sci. Fis. E Nat. 2020, 31, 103–111. [Google Scholar] [CrossRef]
- Dri, G.F.; Fontana, C.S.; de Sales Dambros, C. Estimating the impacts of habitat loss induced by urbanization on bird local extinctions. Biol. Conserv. 2021, 256, 109064. [Google Scholar] [CrossRef]
- Zhang, L.; Yang, L.; Zohner, C.M.; Crowther, T.W.; Li, M.; Shen, F.; Gou, M.; Qion, J.; Yao, L.; Zhou, C. Direct and indirect impacts of urbanization on vegetation growth across the world’s cities. Sci. Adv. 2022, 8, eabo0095. [Google Scholar] [CrossRef]
- Colglazier, W. Sustainable development agenda: 2030. Science 2015, 349, 1048–1050. [Google Scholar] [CrossRef]
- Furberg, D.; Ban, Y.; Nascetti, A. Monitoring of urbanization and analysis of environmental impact in Stockholm with Sentinel-2A and SPOT-5 multispectral data. Remote Sens. 2019, 11, 2408. [Google Scholar] [CrossRef] [Green Version]
- Zhu, Z.; Zhou, Y.; Seto, K.C.; Stokes, E.C.; Deng, C.; Pickett, S.T.A.; Taubenböck, H. Understanding an urbanizing planet: Strategic directions for remote sensing. Remote Sens. Environ. 2019, 228, 164–182. [Google Scholar] [CrossRef]
- Prakash, M.; Ramage, S.; Kavvada, A.; Goodman, S. Open Earth Observations for Sustainable Urban Development. Remote Sens. 2020, 12, 1646. [Google Scholar] [CrossRef]
- Wilson, E.H.; Hurd, J.D.; Civco, D.L.; Prisloe, M.P.; Arnold, C. Development of a geospatial model to quantify, describe and map urban growth. Remote Sens. Environ. 2003, 86, 275–285. [Google Scholar] [CrossRef]
- Zhang, J.; Yu, L.; Li, X.; Zhang, C.; Shi, T.; Wu, X.; Yang, C.; Gao, W.; Li, Q.; Wu, G. Exploring Annual Urban Expansions in the Guangdong-Hong Kong-Macau Greater Bay Area: Spatiotemporal Features and Driving Factors in 1986–2017. Remote Sens. 2020, 12, 2615. [Google Scholar] [CrossRef]
- Zhang, Y. A time-series approach to detect urbanized areas using biophysical indicators and Landsat satellite imagery. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2021, 14, 9210–9222. [Google Scholar] [CrossRef]
- Al-Hameedi, W.M.M.; Chen, J.; Faichia, C.; Al-Shaibah, B.; Nath, B.; Kafy, A.-A.; Hu, G.; Al-Aizari, A. Remote Sensing-Based Urban Sprawl Modeling Using Multilayer Perceptron Neural Network Markov Chain in Baghdad, Iraq. Remote Sens. 2021, 13, 4034. [Google Scholar] [CrossRef]
- Tewolde, M.G.; Cabral, P. Urban Sprawl Analysis and Modeling in Asmara, Eritrea. Remote Sens. 2011, 3, 2148–2165. [Google Scholar] [CrossRef] [Green Version]
- De Jong, S.M.; Barge, A.; van Teeffelen, P.B.M.; van Deursen, W.P.A. Monitoring trends in urban growth and surveying city quarters in Ouagadougou, Burkina Faso using SPOT-XS. Geocarto Int. 2000, 15, 63–70. [Google Scholar] [CrossRef]
- Zubair, O.A.; Ji, W.; Festus, O. Urban expansion and the loss of prairie and agricultural lands: A satellite remote-sensing-based analysis at a sub-watershed scale. Sustainability 2019, 11, 4673. [Google Scholar] [CrossRef] [Green Version]
- Feng, X.; Li, P.; Cheng, T. Sentinel-2 images using multiband temporal texture and one-class random forest. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2021, 14, 6974–6986. [Google Scholar] [CrossRef]
- Deng, J.; Huang, Y.; Chen, B.; Tong, C.; Liu, P.; Wang, H.; Hong, Y. A methodology to monitor urban expansion and green space change using a time series of multi-sensor SPOT and Sentinel-2A images. Remote Sens. 2019, 11, 1230. [Google Scholar] [CrossRef] [Green Version]
- Stefanov, W.L.; Ramsey, M.S.; Christensen, P.R. Monitoring urban land cover change: An expert system approach to land cover classification of semiarid to arid urban centers. Remote Sens. Environ. 2001, 77, 173–185. [Google Scholar] [CrossRef]
- Liu, Z.; He, C.; Zhang, Q.; Huang, Q.; Yang, Y. Extracting the dynamics of urban expansion in China using DMSP-OLS nighttime light data from 1992 to 2008. Landsc. Urban Plan. 2012, 106, 62–72. [Google Scholar] [CrossRef]
- Zhou, N.; Hubacek, K.; Roberts, M. Analysis of spatial patterns of urban growth across South Asia using DMSP-OLS nighttime lights data. Appl. Geogr. 2015, 63, 292–303. [Google Scholar] [CrossRef]
- Li, Y.; Ye, H.; Gao, X.; Sun, D.; Li, Z.; Zhang, N.; Leng, X.; Meng, D.; Zheng, J. Spatiotemporal Patterns of Urbanization in the Three Most Developed Urban Agglomerations in China Based on Continuous Nighttime Light Data (2000–2018). Remote Sens. 2021, 13, 2245. [Google Scholar] [CrossRef]
- Xie, Y.; Weng, Q.; Fu, P. Temporal variations of artificial nighttime lights and their implications for urbanization in the conterminous United States, 2013–2017. Remote Sens. Environ. 2019, 225, 160–174. [Google Scholar] [CrossRef]
- Ban, Y.; Yousif, O. Multitemporal Spaceborne SAR Data for Urban Change Detection in China. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2012, 5, 1087–1094. [Google Scholar] [CrossRef]
- Holobâcă, I.-H.; Ivan, K.; Alexe, M. Extracting built-up areas from Sentinel-1 imagery using land-cover classification and texture analysis. Int. J. Remote Sens. 2019, 40, 8054–8069. [Google Scholar] [CrossRef]
- Taubenböck, H.; Esch, T.; Felbier, A.; Roth, A.; Dech, S. Pattern-Based Accuracy Assessment of an Urban Footprint Classification Using TerraSAR-X Data. IEEE Geosci. Remote Sens. Lett. 2011, 8, 278–282. [Google Scholar] [CrossRef]
- Lisini, G.; Salentinig, A.; Du, P.; Gamba, P. SAR-based urban extents extraction: From ENVISAT to Sentinel-1. IEEE J. Sel. Top. Appl. 2018, 11, 2683–2691. [Google Scholar] [CrossRef]
- Salentining, A.; Gamba, P. A General Framework for Urban Area Extraction Exploiting Multiresolution SAR Data Fusion. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2016, 9, 2009–2018. [Google Scholar] [CrossRef]
- Wegner, J.D.; Auer, S.; Soergel, U. Extraction and Geometrical Accuracy of Double-Bounce Lines in High Resolution SAR Images. Photogramm. Eng. Remote Sens. 2010, 76, 1071–1080. [Google Scholar] [CrossRef]
- Marin, C.; Bovolo, F.; Bruzzone, L. Building Change Detection in Multitemporal Very High Resolution SAR Images. IEEE Trans. Geosci. Remote Sens. 2015, 53, 2664–2682. [Google Scholar] [CrossRef]
- Silva, C.; Vergara-Perucich, F. Determinants of urban sprawl in Latin America: Evidence from Santiago de Chile. SN Soc. Sci. 2021, 1, 202. [Google Scholar] [CrossRef]
- Bolay, J.-C. Urban Planning against Poverty. How to Think and Do Better Cities in the Global South, 1st ed.; Springer Open: Cham, Switzerland, 2020; pp. 167–202. [Google Scholar]
- Frate, L.; Acosta, A.T.R.; Cabido, M.; Hoyos, L.; Carranza, M.L. Temporal Changes in Forest Contexts at Multiple Extents: Three Decades of Fragmentation in the Gran Chaco (1979–2010), Central Argentina. PLoS ONE 2015, 10, e0142855. [Google Scholar] [CrossRef]
- Andrade-Núñez, M.J.; Aide, T.M. Built-up expansion between 2001 and 2011 in South America continues well beyond the cities. Environ. Res. Lett. 2018, 13, 084006. [Google Scholar] [CrossRef]
- Carranza, M.L.; Hoyos, L.; Frate, L.; Acosta, A.T.R.; Cabido, M. Measuring forest fragmentation using multitemporal forest cover maps: Forest loss and spatial pattern analysis in the Gran Chaco, central Argentina. Landsc. Urban Plan. 2015, 43, 238–247. [Google Scholar] [CrossRef]
- Leveau, L.M.; Isla, F.I.; Bellocq, M.I. Urbanization and the temporal homogenization of bird communities: A case study in central Argentina. Urban Ecosyst. 2015, 18, 1461–1476. [Google Scholar] [CrossRef]
- Izquierdo, A.E.; Grau, H.R.; Aide, T.M. Implications of Rural-Urban Migration for Conservation of the Atlantic Forest and Urban Growth in Misiones, Argentina (1970–2030). AMBIO 2011, 40, 298–309. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liu, X.; Huang, Y.; Xu, X.; Li, X.; Li, X.; Ciais, P.; Lin, P.; Gong, K.; Ziegler, A.D.; Chen, A.; et al. High-spatiotemporal-resolution mapping of global urban change from 1985 to 2015. Nat. Sustain. 2020, 3, 564–570. [Google Scholar] [CrossRef]
- Xue, X.; Liu, H.; Mu, X.; Liu, J. Trajectory-based detection of urban expansion using Landsat time series. Int. J. Remote Sens. 2014, 35, 1450–1465. [Google Scholar] [CrossRef]
- Gamba, P.; Dell’Acqua, F.; Trianni, G. Hypertemporal SAR sequences for monitoring land cover dynamics. In Proceedings of the 2008 IEEE Radar Conference, Rome, Italy, 26–30 May 2008; pp. 1–5. [Google Scholar]
- Amiri, R.; Weng, Q.; Alimohammadi, A.; Alavipanah, S.K. Spatial-temporal dynamics of land surface temperature in relation to fractional vegetation cover and land use/cover in the Tabriz urban area, Iran. Remote Sens. Environ. 2009, 113, 2606–2617. [Google Scholar] [CrossRef]
- Storey, E.A.; Stow, D.A.; O’Leary, J. Assessing postfire recovery of chamise chaparral using multi-temporal spectral vegetation index trajectories derived from Landsat imagery. Remote Sens. Environ. 2016, 183, 53–64. [Google Scholar] [CrossRef] [Green Version]
- Ouedraogo, I.; Savadogo, P.; Tigabu, M.; Cole, R.; Oden, P.C.; Ouadba, J.-M. Trajectory analysis of forest cover change in the tropical dry forest of Burkina Faso, west Africa. Landsc. Res. 2011, 36, 303–320. [Google Scholar] [CrossRef]
- Seto, K.C.; Fragkias, M. Quantifying spatiotemporal patterns of urban land-use change in four cities of China with time series landscape metrics. Landsc. Ecol. 2005, 20, 871–888. [Google Scholar] [CrossRef]
- Liu, T.; Yang, X. Monitoring land changes in an urban area using satellite imagery, GIS and landscape metrics. Appl. Geogr. 2015, 56, 42–54. [Google Scholar] [CrossRef]
- Gbanie, S.P.; Griffiin, A.L.; Thornton, A. Impacts on the Urban Environment: Land Cover Change Trajectories and Landscape Fragmentation in Post-War Western Area, Sierra Leone. Remote Sens. 2018, 10, 129. [Google Scholar] [CrossRef] [Green Version]
- Blei, A.; Angel, S. Global monitoring with the atlas of urban expansion. In Urban Remote Sensing: Monitoring, Synthesis, and Modeling in the Urban Environment, 2nd ed.; Yang, X., Ed.; Wiley Blackwell: Hoboken, NJ, USA, 2021; pp. 247–282. [Google Scholar]
- Peel, M.C.; Finlayson, B.L.; McMahon, T.A. Updated world map of the Köppen-Geiger climate classification. Hydrol. Earth Syst. Sci. 2007, 11, 1633–1644. [Google Scholar] [CrossRef]
- Covello, F.; Battazza, F.; Coletta, A.; Lopinto, E.; Fiorentino, C.; Pietranera, L.; Valentini, G.; Zoffoli, S. COSMO-SkyMed an existing opportunity for observing the Earth. J. Geodyn. 2010, 49, 171–180. [Google Scholar] [CrossRef] [Green Version]
- Serva, S.; Fiorentino, C.; Covello, F. The COSMO-SkyMed Seconda Generazione key improvements to respond to the user community needs. In Proceedings of the 2015 IEEE International Geoscience and Remote Sensing Symposium (IGARSS), Milan, Italy, 26–31 July 2015; pp. 219–222. [Google Scholar]
- Fiorentino, C.; Virelli, M. COSMO-SkyMed Mission and Products Description; Technical Report; Italian Space Agency: Rome, Italy, 2019. [Google Scholar]
- Zhao, W.; Deledalle, C.-A.; Denis, L.; Maître, H.; Nicolas, J.-M.; Tupin, F. Ratio-Based Multitemporal SAR Images Denoising: RABASAR. IEEE Trans. Geosci. Remote Sens. 2019, 57, 3552–3565. [Google Scholar] [CrossRef] [Green Version]
- Gamba, P.; Lisini, G. Fast and Efficient Urban Extent Extraction Using ASAR Wide Swath Mode Data. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2013, 6, 2184–2195. [Google Scholar] [CrossRef]
- Farr, T.G.; Rosen, P.A.; Caro, E.; Crippen, R.; Duren, R.; Hensley, S.; Kobrick, M.; Paller, M.; Rodriguez, E.; Roth, L.; et al. The shuttle radar topography mission. Rev. Geophys. 2007, 45, RG2004. [Google Scholar] [CrossRef] [Green Version]
- Iannelli, G.C.; Gamba, P. Urban Extent Extraction Combining Sentinel Data in the Optical and Microwave Range. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2019, 12, 2209–2216. [Google Scholar] [CrossRef]
- Congalton, R.G.; Green, K. Assessing the Accuracy of Remotely Sensed Data. Principles and Practices, 3rd ed.; Taylor & Francis Group: Boca Raton, FL, USA, 2019; pp. 71–132. [Google Scholar]
- Landis, J.R.; Koch, G.G. The Measurement of Observer Agreement for Categorical Data. Biometrics 1977, 33, 159–174. [Google Scholar] [CrossRef] [Green Version]
- Marconcini, M.; Metz-Marconcini, A.; Üreyen, S.; Palacios-Lopez, D.; Hanke, W.; Bachofer, F.; Zeidler, J.; Esch, T.; Gorelick, N.; Kakarla, A.; et al. Outlining where humans live, the World Settlement Footprint 2015. Sci. Data 2020, 7, 242. [Google Scholar] [CrossRef]
- Marconcini, M.; Metz-Marconcini, A.; Esch, T.; Gorelick, N. Understanding current trends in global urbanization—The World Settlment Footprint suite. GI_Forum 2021, 9, 33–38. [Google Scholar] [CrossRef]
- Gašparović, M. Urban growth pattern detection and analysis. In Urban Ecology: Emerging Patterns and Social-Ecological Systems, 1st ed.; Verma, P., Singh, P., Singh, R., Raghubanshi, A.S., Eds.; Elsevier: Oxford, UK, 2020; pp. 35–48. [Google Scholar]
- Aburas, M.M.; Ho, Y.M.; Ramli, M.F.; Ash’aari, Z.H. Monitoring and assessment of urban growth patterns using spatio-temporal built-up area analysis. Environ. Monit. Assess. 2018, 190, 156. [Google Scholar] [CrossRef]
- Turner, M.G. Landscape ecology: What is the state of the science? Annu. Rev. Ecol. Evol. Syst. 2005, 36, 319–344. [Google Scholar] [CrossRef]
- Malavasi, M.; Carranza, M.L.; Moravec, D.; Cutini, M. Reforestation dynamics after land abandonment: A trajectory analysis in Mediterranean mountain landscapes. Reg. Environ. Change 2018, 18, 2459–2469. [Google Scholar] [CrossRef]
- Wu, J. Urban ecology and sustainability: The state-of-the-science and future directions. Landsc. Urban Plan. 2014, 125, 209–221. [Google Scholar] [CrossRef]
- Bagan, H.; Yamagata, Y. Land-cover change analysis in 50 global cities by using a combination of Landsat data and analysis of grid cells. Environ. Res. Lett. 2014, 9, 064015. [Google Scholar] [CrossRef]
- Shelestov, A.; Yailymova, H.; Yailymov, B.; Shumilo, L.; Lavreniuk, A.M. Extension of copernicus urban atlas to non-european countries. In Proceedings of the 2021 IEEE International Geoscience and Remote Sensing Symposium IGARSS, Brussels, Belgium, 11–16 July 2021; pp. 6789–6792. [Google Scholar]
- Masoudi, M.; Tan, P.Y. Multi-year comparison of the effects of spatial pattern of urban green spaces on urban land surface temperature. Landsc. Urban Plan. 2019, 184, 44–58. [Google Scholar] [CrossRef]
- Masoudi, M.; Tan, P.Y.; Liew, S.C. Multi-city comparison of the relationships between spatial pattern and cooling effect of urban green spaces in four major Asian cities. Ecol. Indic. 2019, 98, 200–213. [Google Scholar] [CrossRef]
- McGarigal, K.; Marks, B.J. Spatial Pattern Analysis Program for Quantifying Landscape Structure; General Technical Report PNW-GTR-351; U.S. Department of Agriculture, Forest Service, Pacific Northwest Research Station: Portland, OR, USA, 1995.
- Luo, J.; Wei, Y.H.D. Modeling spatial variations of urban growth patterns in Chinese cities: The case of Nanjing. Landsc. Urban Plan. 2009, 91, 51–64. [Google Scholar] [CrossRef]
- Carranza, M.L.; Frate, L.; Acosta, A.T.R.; Hoyos, L.; Ricotta, C.; Cabido, M. Measuring forest fragmentation using multitemporal remotely sensed data: Three decades of change in the dry Chaco. Eur. J. Remote Sens. 2014, 47, 793–804. [Google Scholar] [CrossRef]
- Long, J.A.; Nelson, T.A.; Wulder, M. Characterizing forest fragmentation: Distinguishing change in composition from configuration. Appl. Geogr. 2010, 30, 426–435. [Google Scholar] [CrossRef] [Green Version]
- Hu, H.; Band, Y. Unsupervised Change Detection in Multitemporal SAR Images Over Large Urban Areas. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2014, 7, 3248–3261. [Google Scholar] [CrossRef]
- Sun, Z.; Xu, R.; Du, W.; Wang, L.; Lu, D. High-Resolution Urban Land Mapping in China from Sentinel 1A/2 Imagery Based on Google Earth Engine. Remote Sens. 2019, 11, 752. [Google Scholar] [CrossRef]
- Gamba, P.; Aldrighi, M.; Stasolla, M. Robust Extraction of Urban Area Extents in HR and VHR SAR Images. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2011, 4, 27–34. [Google Scholar] [CrossRef]
- Che, M.; Du, P.; Gamba, P. 2- and 3-D Urban Change Detection with Quad-PolSAR Data. IEEE Geosci. Remote Sens. Lett. 2018, 15, 68–72. [Google Scholar] [CrossRef]
- Chen, B.; Xu, B.; Gong, P. Mapping essential urban land use categories (EULUC) using geospatial big data: Progress, challenges, and opportunities. Big Earth Data 2021, 5, 410–441. [Google Scholar] [CrossRef]
- Valdiviezo-N, J.C.; Hernandez-Lopez, F.J.; Téllez-Quiñones, A. Morphological reconstruction algorithms for urban monitoring using satellite data: Proper selection of the marker and mask images. Int. J. Remote Sens. 2022, 43, 674–697. [Google Scholar] [CrossRef]
- Inostroza, L.; Baur, R.; Csaplovics, E. Urban sprawl and fragmentation in Latin America: A dynamic quantification and characterization of spatial patterns. J. Environ. Manag. 2013, 115, 87–97. [Google Scholar] [CrossRef]
- Chakraborty, S.; Maity, I.; Dadashpoor, H.; Novotný, J. Building in or out? Examining urban expansion patterns and land use efficiency across the global sample of 466 cities with million+ inhabitants. Habitat Int. 2022, 120, 102503. [Google Scholar] [CrossRef]
- Li, G.; Sun, S.; Fang, C. The varying driving forces of urban expansion in China: Insights from a spatial-temporal analysis. Landsc. Urban Plan. 2018, 174, 63–77. [Google Scholar] [CrossRef]
- Mari, N.A.; Giobellina, B.L.; Benitez, A.; Marinelli, M.V. Mapping and characterizing the green belt of Cordoba: Land dynamics and the urban-rural transformation process. J. Agron. Res. 2019, 2, 29–46. [Google Scholar] [CrossRef] [Green Version]
- Li, S. Change detection: How has urban expansion in Buenos Aires metropolitan region affected croplands. Int. J. Digit. Earth 2018, 11, 195–211. [Google Scholar] [CrossRef]
- Haaland, C.; van den Bosch, C.K. Challenges and strategies for urban green-space planning in cities undergoing densification: A review. Urban For. Urban Green. 2015, 14, 760–771. [Google Scholar] [CrossRef]
- Wei, Y.D.; Ewing, R. Urban expansion, sprawl and inequality. Landsc. Urban Plan. 2018, 177, 259–265. [Google Scholar] [CrossRef]
- Rodríguez, M.C.; Dupont-Courted, L.; Oueslati, W. Air pollution and urban structures linkages: Evidence from European cities. Renew. Sust. Energy Rev. 2016, 53, 1–9. [Google Scholar] [CrossRef]
- Fujii, H.; Iwata, K.; Managi, S. How do urban characteristics affect climate change mitigation policies? J. Clean. Prod. 2017, 168, 271–278. [Google Scholar] [CrossRef] [Green Version]
- He, C.; Liu, Z.; Tian, J.; Ma, Q. Urban expansion dynamics and natural habitat loss in China: A multiscale landscape perspective. Glob. Change Biol. 2014, 20, 2886–2902. [Google Scholar] [CrossRef] [PubMed]
- Canedoli, C.; Crocco, F.; Comolli, R.; Padoa-Schioppa, E. Landscape fragmentation and urban sprawl in the urban region of Milan. Landsc. Res. 2017, 43, 1–20. [Google Scholar] [CrossRef]
- Boscutti, F.; Lami, F.; Pellegrini, E.; Buccheri, M.; Busato, F.; Martini, F.; Sibella, R.; Sigura, M.; Marini, L. Urban sprawl facilitates invasions of exotic plants across multiple spatial scales. Biol. Invasions 2022, 24, 1497–1510. [Google Scholar] [CrossRef]
- Valente, D.; Pasimeni, M.R.; Petrosillo, I. The role of green infrastructures in Italian cities by linking natural and social capital. Ecol. Indic. 2020, 108, 105694. [Google Scholar] [CrossRef]
- Kowe, P.; Mutanga, O.; Odindi, J.; Dube, T. A quantitative framework for analyzing long term spatial clustering and vegetation fragmentation in an urban landscape using multi-temporal Landsat data. Int. J. Appl. Earth Obs. Geoinf. 2020, 88, 102057. [Google Scholar] [CrossRef]
- Mou, Y.; Song, Y.; Xu, Q.; He, Q.; Hu, A. Influence of Urban-Growth Pattern on Air Quality in China: A Study of 338 Cities. Int. J. Environ. Res. Public Health 2018, 15, 1805. [Google Scholar] [CrossRef] [Green Version]
- Tian, P.; Li, J.; Cao, L.; Pu, R.; Wang, Z.; Zhang, H.; Chen, H.; Gong, H. Assessing spatiotemporal characteristics of urban heat islands from the perspective of an urban expansion and green infrastructure. Sustain. Cities Soc. 2021, 74, 103208. [Google Scholar] [CrossRef]
- Cao, Q.; Yu, D.; Georgescu, M.; Wu, J.; Wang, W. Impacts of future urban expansion on summer climate and heat-related human health in eastern China. Environ. Int. 2018, 112, 131–146. [Google Scholar] [CrossRef]
- He, Q.; Song, Y.; Liu, Y.; Yin, C. Diffusion or coalescence? Urban growth pattern and change in 363 Chines cities from 1995 to 2015. Sustain. Cities Soc. 2017, 35, 729–739. [Google Scholar] [CrossRef]
- Akpinar, A.; Barbosa-Leiker, C.; Brooks, K.R. Does green space matter? Exploring relationships between green space type and health indicators. Urban For. Urban Green. 2016, 20, 407–418. [Google Scholar] [CrossRef]
- Teixeira, C.P.; Fernandes, C.O.; Ahern, J.; Honrado, J.P.; Farinha-Marques, P. Urban ecological novelty assessment: Implications for urban green infrastructure planning and management. Sci. Total Environ. 2021, 773, 145121. [Google Scholar] [CrossRef]
- McCormick, K.; Anderberg, S.; Coenen, L.; Neij, L. Advancing sustainable urban transformation. J. Clean. Prod. 2013, 50, 1–11. [Google Scholar] [CrossRef] [Green Version]
- Hidalgo, D.; Huizenga, C. Implementation of sustainable urban transport in Latin America. Res. Transp. Econ. 2013, 40, 66–77. [Google Scholar] [CrossRef]
- Gaston, K.J.; Ávila-Jiménez, M.L.; Edmondson, J.L. Managing urban ecosystems for goods and services. J. Appl. Ecol. 2013, 50, 830–840. [Google Scholar] [CrossRef]
- McDonnell, M.J.; MacGregor-Fors, I. The ecological future of cities. Science 2016, 352, 936–938. [Google Scholar] [CrossRef]
- Sellberg, M.; Wilkinson, C.; Peterson, G.D. Resilience assessment: A useful approach to navigate urban sustainability challenges. Ecol. Soc. 2015, 20, 43. [Google Scholar] [CrossRef]
Acronym | Formula | Description | Unit | Landscape Pattern Facet |
---|---|---|---|---|
PLAND | Proportion of landscape occupied by urban class. Measure of dominance. | Percent (%) | Composition | |
PD | Number of urban patches per unit area. Measure of urban sprawl. | Number per hectare | Configuration | |
ED | Total edge length of urban patches per unit area. Measure of urban areas’ shape complexity. | Meters per hectare | Configuration | |
AREA_MN | Average area of urban areas weighted by the number of urban patches. Measure of the degree of urbanization. | Hectares | Configuration |
Step | OA (%) | K | Urb. UA (%) | Urb. PA (%) | N. Urb. UA (%) | N. Urb. PA (%) |
---|---|---|---|---|---|---|
T0 | 94.75 ± 0.74 | 0.88 ± 0.02 | 92.39 ± 3.39 | 91.92 ± 1.65 | 95.75 ± 1.23 | 96.24 ± 0.59 |
T1 | 91.98 ± 1.95 | 0.83 ± 0.05 | 84.55 ± 5.86 | 94.90 ± 1.93 | 96.95 ± 0.53 | 90.26 ± 0.02 |
T2 | 91.58 ± 0.99 | 0.82 ± 0.03 | 87.84 ± 5.50 | 88.68 ± 1.56 | 93.41 ± 1.70 | 93.21 ± 1.25 |
T3 | 93.62 ± 0.20 | 0.86 ± 0.01 | 94.06 ± 3.28 | 88.17 ± 0.94 | 93.17 ± 1.68 | 96.90 ± 1.19 |
Step | OA (%) | K | UrbExp. UA (%) | UrbExp. PA (%) | N. UrbExp. UA (%) | N. UrbExp. PA (%) |
---|---|---|---|---|---|---|
UrbExpT1 | 92.00 | 0.73 | 66.67 | 93.33 | 98.73 | 91.77 |
UrbExpT2 | 90.50 | 0.79 | 96.83 | 78.21 | 87.59 | 98.36 |
UrbExpT3 | 91.00 | 0.81 | 97.06 | 80.49 | 87.88 | 98.31 |
T0 | T1 | T2 | T3 | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
L. CI | Mean | U. CI | L. CI | Mean | U. CI | L. CI | Mean | U. CI | L. CI | Mean | U. CI | |
Very Low urban intensity | ||||||||||||
PLAND | 0.00 | 9.21 a | 33.32 | 0.00 | 14.15 b | 46.11 | 0.69 | 25.24 c | 73.19 | 1.07 | 27.01 c | 77.12 |
AREA_MN | 0.00 | 0.91 a | 3.38 | 0.00 | 1.24 a | 4.84 | 0.07 | 2.15 b | 8.44 | 0.10 | 2.31 b | 9.41 |
ED | 0.00 | 25.20 a | 74.60 | 0.00 | 36.60 a | 94.33 | 7.72 | 49.42 a | 100.58 | 8.83 | 53.37 a | 107.39 |
PD | 0.00 | 8.91 a | 24.19 | 0.00 | 11.27 a | 24.11 | 8.04 | 14.51 a | 32.15 | 8.04 | 15.40 a | 32.15 |
Low urban intensity | ||||||||||||
PLAND | 1.06 | 24.06 a | 67.58 | 2.28 | 36.27 b | 85.97 | 2.58 | 41.45 b | 90.73 | 2.99 | 42.10 b | 89.80 |
AREA_MN | 0.10 | 2.38 a | 7.84 | 0.19 | 3.07 b | 10.40 | 0.21 | 3.87 c | 11.25 | 0.24 | 3.83 d | 11.11 |
ED | 9.21 | 27.23 a | 98.92 | 13.42 | 31.71 b | 116.21 | 13.42 | 28.36 b | 106.65 | 14.53 | 30.22 b | 113.64 |
PD | 8.06 | 14.45 a | 24.19 | 8.04 | 15.88 a | 32.15 | 8.04 | 14.37 a | 32.15 | 8.04 | 14.97 a | 32.15 |
Medium urban intensity | ||||||||||||
PLAND | 3.75 | 44.19 a | 90.04 | 4.70 | 58.07 b | 99.55 | 6.21 | 58.61 b | 99.79 | 8.45 | 61.33 b | 99.74 |
AREA_MN | 0.28 | 3.59 a | 11.14 | 0.33 | 4.32 b | 12.38 | 0.40 | 4.32 b | 12.42 | 0.48 | 4.32 b | 12.41 |
ED | 13.37 | 63.54 a | 112.55 | 4.96 | 59.99 a | 114.92 | 4.04 | 54.42 a | 105.55 | 4.41 | 58.70 a | 114.00 |
PD | 8.06 | 15.65 a | 32.26 | 8.04 | 14.21 a | 32.15 | 8.04 | 13.22 a | 32.15 | 8.04 | 13.27 b | 32.15 |
High urban intensity | ||||||||||||
PLAND | 13.53 | 68.42 a | 100.00 | 23.96 | 80.11 b | 100.00 | 34.52 | 81.96 b | 100.00 | 38.21 | 82.77 b | 100.00 |
AREA_MN | 0.69 | 7.45 a | 12.40 | 1.20 | 8.87 b | 12.44 | 1.49 | 9.20 b | 12.44 | 1.74 | 9.23 c | 12.44 |
ED | 0.00 | 50.77 a | 95.05 | 0.00 | 40.74 a | 109.22 | 0.00 | 35.06 a | 108.67 | 0.00 | 36.25 a | 112.35 |
PD | 8.06 | 12.01 a | 24.19 | 8.04 | 11.30 a | 24.11 | 8.04 | 11.32 a | 24.11 | 8.04 | 11.27 a | 24.11 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Marzialetti, F.; Gamba, P.; Sorriso, A.; Carranza, M.L. Monitoring Urban Expansion by Coupling Multi-Temporal Active Remote Sensing and Landscape Analysis: Changes in the Metropolitan Area of Cordoba (Argentina) from 2010 to 2021. Remote Sens. 2023, 15, 336. https://doi.org/10.3390/rs15020336
Marzialetti F, Gamba P, Sorriso A, Carranza ML. Monitoring Urban Expansion by Coupling Multi-Temporal Active Remote Sensing and Landscape Analysis: Changes in the Metropolitan Area of Cordoba (Argentina) from 2010 to 2021. Remote Sensing. 2023; 15(2):336. https://doi.org/10.3390/rs15020336
Chicago/Turabian StyleMarzialetti, Flavio, Paolo Gamba, Antonietta Sorriso, and Maria Laura Carranza. 2023. "Monitoring Urban Expansion by Coupling Multi-Temporal Active Remote Sensing and Landscape Analysis: Changes in the Metropolitan Area of Cordoba (Argentina) from 2010 to 2021" Remote Sensing 15, no. 2: 336. https://doi.org/10.3390/rs15020336