Spatial and Temporal Characteristics of Ecosystem Service Trade-Off and Synergy Relationships in the Western Sichuan Plateau, China
<p>Location and overview of the western Sichuan Plateau.</p> "> Figure 2
<p>The research framework.</p> "> Figure 3
<p>Changes over 20 years and spatial distribution characteristics of ecosystem services in western Sichuan Plateau: (<b>a</b>–<b>e</b>) mean ecosystem services in 2000 and (<b>f</b>–<b>j</b>) mean ecosystem services in 2020.</p> "> Figure 4
<p>Spatial distribution of trade-off and synergy of ecosystem services in the western Sichuan Plateau: (<b>a</b>–<b>j</b>) respectively represent the trade-offs and synergies of food supply-water supply, food supply-habitat quality, food supply-soil conservation, food supply-carbon storage, water supply-habitat quality, water supply-soil conservation, water supply-carbon storage, habitat quality-soil conservation, habitat quality-carbon storage, soil conservation-carbon storage).</p> ">
Abstract
:1. Introduction
2. Study Area and Data Sources
2.1. Overview of the Study Area
2.2. Data Sources
3. Research Methodology
3.1. InVEST Model
3.1.1. Water Supply
3.1.2. Carbon Storage
3.1.3. Habitat Quality
3.1.4. Soil Conservation
3.2. Food Supply
3.3. Trade-Off and Synergy Analysis of Ecosystem Services
3.4. Geodetector
4. Results
4.1. Spatial Heterogeneity Analysis of Ecosystem Services
4.2. Analysis of Ecosystem Service Trade-Off and Synergy Relationships in the Western Sichuan Plateau
4.2.1. Changes in 20 Years of Ecosystem Service Trade-Off/Synergy Relationships
4.2.2. Spatial Characteristics of Ecosystem Service Trade-Off/Synergy Relationships
4.3. Ecosystem Service Driver Detection in the Western Sichuan Plateau
4.3.1. Analysis of Factor Detection Results
4.3.2. Factor Interaction Detection
5. Discussion
5.1. Ecosystem Services and Their Trade-Off/Synergy Relationships
5.2. Exploration of Driving Mechanism and Suggestions
5.2.1. Exploration of the Driving Mechanism
5.2.2. Suggestions
5.3. Future Outlook and Limitations
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Millennium Ecosystem Assessment. Ecosystem and Human Well-Being; Island Press: Washington, DC, USA, 2005. [Google Scholar]
- Wang, H.; Liu, G.; Li, Z.; Zhang, L.; Wang, Z. Processes and driving forces for changing vegetation ecosystem services: Insights from the Shaanxi Province of China. Ecol. Indic. 2020, 112, 106105. [Google Scholar] [CrossRef]
- Chong, J.; Li, D.Q.; Wang, D.W.; Zhang, L.B. Quantification and assessment of changes in ecosystem service in the Three-River Headwaters Region, China as a result of climate variability and land cover change. Ecol. Indic. 2016, 66, 199–211. [Google Scholar]
- Joshua, H.G.; Giorgio, C.; Thomas, K.D.; Driss, E.; Neil, H.; Guillermo, M.; Stephen, P.; Stacie, W.; Daily, G.C. Integrating ecosystem-service tradeoffs into land-use decisions. Proc. Natl. Acad. Sci. USA 2012, 109, 7565–7570. [Google Scholar]
- Turner, K.G.; Odgaard, M.V.; Bocher, P.K.; Dalgaard, T.; Svenning, J.C. Bundling ecosystem services in Denmark: Trade-offs and synergies in a cultural landscape. Landsc. Urban Plan. 2014, 125, 89–104. [Google Scholar] [CrossRef]
- Tomscha, S.A.; Gergel, S.E. Ecosystem service trade-offs and synergies misunderstood without landscape history. Ecol. Soc. 2016, 21, 43. [Google Scholar] [CrossRef] [Green Version]
- Han, Z.; Song, W.; Deng, X.Z.; Xu, X.L. Trade-Offs and Synergies in Ecosystem Service within the Three-Rivers Headwater Region, China. Water 2017, 9, 588. [Google Scholar] [CrossRef] [Green Version]
- Karimi, J.D.; Harris, J.A.; Corstanje, R. Using Bayesian Belief Networks to assess the influence of landscape connectivity on ecosystem service trade-offs and synergies in urban landscapes in the UK. Landsc. Ecol. 2021, 36, 3345–3363. [Google Scholar] [CrossRef]
- Rallings, A.M.; Smukler, S.M.; Gergel, S.E.; Mullinix, K. Towards multifunctional land use in an agricultural landscape: A trade-off and synergy analysis in the Lower Fraser Valley, Canada. Landsc. Urban Plan. 2019, 184, 88–100. [Google Scholar] [CrossRef]
- Gao, J.; Zuo, L. Revealing ecosystem services relationships and their driving factors for five basins of Beijing. J. Geogr. Sci. 2021, 31, 111–129. [Google Scholar] [CrossRef]
- Ament, J.M.; Moore, C.A.; Herbst, M.; Cumming, G.S. Cultural Ecosystem Services in Protected Areas: Understanding Bundles, Trade-Offs, and Synergies. Conserv. Lett. 2017, 10, 440–450. [Google Scholar] [CrossRef] [Green Version]
- Qin, K.Y.; Li, J.; Yang, X.N. Trade-Off and Synergy among Ecosystem Services in the Guanzhong-Tianshui Economic Region of China. Int. J. Environ. Res. Public Health 2015, 12, 14094–14113. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Haase, D.; Schwarz, N.; Strohbach, M.; Kroll, F.; Seppelt, R. Synergies, trade-offs, and losses of ecosystem services in urban regions: An integrated multiscale framework applied to the Leipzig-Halle Region, Germany. Ecol. Soc. 2012, 17, 22. [Google Scholar] [CrossRef]
- Bradford, J.; D’Amato, A. Recognizing trade-offs in multi-objective land management. Front. Ecol. Environ. 2012, 10, 210–216. [Google Scholar] [CrossRef] [Green Version]
- Li, X.; Yu, X.; Wu, K.N.; Feng, Z.; Liu, Y.N.; Li, X.L. Land-use zoning management to protecting the Regional Key Ecosystem Services: A case study in the city belt along the Chaobai River, China. Sci. Total Environ. 2021, 762, 143167. [Google Scholar] [CrossRef]
- Zhu, P.; Liu, X.; Zheng, Y.; Wang, S.; Huang, L. Tadeoffs and synergies of ecosystem services in key ecological function zones in northern China. Acta Ecol. Sin. 2020, 40, 8694–8706. [Google Scholar]
- Niu, T.; Yu, J.; Yue, D.; Yang, L.; Mao, X.; Hu, Y.; Long, Q. The Temporal and Spatial Evolution of Ecosystem Service Synergy/Trade-Offs Based on Ecological Units. Forests 2021, 12, 992. [Google Scholar] [CrossRef]
- Sun, Y.J.; Li, J.; Liu, X.F.; Ren, Z.Y.; Zhou, Z.X.; Duan, Y.F. Spatially Explicit Analysis of Trade-Offs and Synergies among Multiple Ecosystem Services in Shaanxi Valley Basins. Forests 2020, 11, 209. [Google Scholar] [CrossRef] [Green Version]
- Huang, Q.; Peng, L.; Huang, K.; Deng, W.; Liu, Y. Generalized Additive Model Reveals Nonlinear Trade-Offs/Synergies between Relationships of Ecosystem Services for Mountainous Areas of Southwest China. Remote Sens. 2022, 14, 2733. [Google Scholar] [CrossRef]
- Li, M.; Zheng, P.; Pan, W. Spatial-Temporal Variation and Tradeoffs/Synergies Analysis on Multiple Ecosystem Services: A Case Study in Fujian. Sustainability 2022, 14, 3086. [Google Scholar] [CrossRef]
- Zahra, A.; Abdolrassoul, S.; Yousef, S.; Seyed, H.M.; Himlal, B.; Mojgansadat, A. Dynamic trade-off analysis of multiple ecosystem services under land use change scenarios: Towards putting ecosystem services into planning in Iran. Ecol. Complex. 2018, 36, 250–260. [Google Scholar]
- Butler, J.R.; Wong, G.Y.; Metcalfe, D.J.; Honzák, M.; Pert, P.L.; Rao, N.; van Grieken, M.E.; Lawson, T.; Bruce, C.; Brodie, J.E.; et al. An analysis of trade-offs between multiple ecosystem services and stakeholders linked to land use and water quality management in the Great Barrier Reef, Australia. Agric. Ecosyst. Environ. 2013, 180, 176–191. [Google Scholar] [CrossRef]
- Costanza, R.; de Groot, R.; Farber, S.; Grasso, M.; Hannon, B.; Limburg, K.; Naeem, S.; Paruelo, J.; Raskin, R.G.; Van Den Belt, M.; et al. The value of the world’s ecosystem services and natural capital. Nature 1997, 387, 253–260. [Google Scholar] [CrossRef]
- Wu, J. Landscape sustainability science: Ecosystem services and human well-being in changing landscapes. Landsc. Ecol. 2013, 28, 999–1023. [Google Scholar] [CrossRef]
- Cheng, M.; Huang, B.; Kong, L.; Ouyang, Z. Ecosystem Spatial Changes and Driving Forces in the Bohai Coastal Zone. Int. J. Environ. Res. Public Health 2019, 16, 536. [Google Scholar] [CrossRef] [PubMed]
- Tolessa, T.; Senbeta, F.; Kidane, M. The impact of land use/land cover change on ecosystem services in the central highlands of Ethiopia. Ecosyst. Serv. 2017, 23, 47–54. [Google Scholar] [CrossRef]
- Chen, M.Q.; Lu, Y.F.; Li, L.; Wan, Y.; Luo, Z.J.; Huang, H.S. Drivers of changes in ecosystem service values in Ganjiang upstream watershed. Land Use Policy 2015, 47, 247–252. [Google Scholar] [CrossRef]
- Wu, X.; Liu, S.L.; Zhao, S.; Hou, X.Y.; Xu, J.W.; Dong, S.K.; Liu, G.H. Quantification and driving force analysis of ecosystem services supply, demand and balance in China. Total Environ. 2019, 652, 1375–1386. [Google Scholar] [CrossRef]
- Sannigrahi, S.; Qi, Z.; Francesco, P.; Kumar, J.P.; Bidroha, B.; Saskia, K.; Roy, P.S.; Ying, W.; Sutton, P.C.; Suman, C.; et al. Responses of ecosystem services to natural and anthropogenic forcings: A spatial regression based assessment in the world’s largest mangrove ecosystem. Sci. Total Environ. 2020, 715, 13700413. [Google Scholar] [CrossRef]
- Zhang, Y.; Liu, Y.; Pan, J.; Zhang, Y.; Liu, D.; Chen, H.; Wei, J.; Zhang, Z.; Liu, Y. Exploring Spatially Non-Stationary and Scale-Dependent Responses of Ecosystem Services to Urbanization in Wuhan, China. Int. J. Environ. Res. Public Health 2020, 17, 2989. [Google Scholar] [CrossRef]
- Huang, Y.; Feng, T.; Niu, S.F.; Hao, D.S.; Gan, X.Y.; Zhou, B. Integrating the effects of driving forces on ecosystem services into ecological management: A case study from Sichuan Province, China. PLoS ONE 2020, 17, e0270365. [Google Scholar] [CrossRef]
- Sichuan Province Bureau of Statistics. Sichuan Statistical Yearbook; China Statistical Publishing House: Beijing, China, 2000. (In Chinese) [Google Scholar]
- Wei, J.L. Temporal and Spatial Changes and Driving Forces of Desertification in Western Sichuan Plateau; Chengdu University of Technology: Chengdu, China, 2017. (In Chinese) [Google Scholar]
- Liu, Y.M.; Yang, S.; Han, C.L.; Ni, W.; Zhu, Y.Y. Variability in Regional Ecological Vulnerability: A Case Study of Sichuan Province, China. Int. J. Disaster Risk Sci. 2020, 11, 696–708. [Google Scholar] [CrossRef]
- Degraer, S.; Verfaillie, E.; Willems, W.; Adriaens, E.; Vincx, M.; Van Lancker, V. Habitat suitability modelling as a mapping tool for macrobenthic communities: An example from the Belgian part of the North Sea. Cont. Shelf Res. 2008, 28, 369–379. [Google Scholar] [CrossRef] [Green Version]
- Sharp, R.; Tallis, H.; Ricketts, T.; Guerry, A.D.; Wood, S.A.; Chaplin-Kramer, R. InVEST User’s Guide; Version 3.5.0; The Natural Capital Project; Stanford University: Stanford, CA, USA, 2015; pp. 123–124. [Google Scholar]
- Sharp, R.; Chaplin-Kramer, R.; Wood, S.; Guerry, A.; Douglass, J. InVEST User’s Guide; Stanford University: Stanford, CA, USA, 2018. [Google Scholar]
- Tallis, H.; Ricketts, T.H.; Daily, G.C.; Polasky, S. Natural Capital: Theory and Practice of Mapping Ecosystem Services; Oxford University Press: Oxford, UK, 2011; pp. 34–48. [Google Scholar]
- Chen, T.Q.; Feng, Z.; Zhao, F.H.; Wu, K.N. Identification of ecosystem service bundles and driving factors in Beijing and its surrounding areas. Sci. Total Environ. 2020, 711, 134687. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.H.; Shi, H.P.; Zhou, A.M.; Li, T.J.; Xiao, L.; Wang, Y.W.; Zhou, Y.G.; Liu, B.K.; Liu, Y.D.; Lai, S. Discussion on grazing and supplementary feeding techniques of cattle and sheep in northwest Sichuan plateau pastoral area. Sichuan Agric. Sci. Technol. 2020, 10, 62–64. (In Chinese) [Google Scholar]
- Rangtang County Financial Media Center. Aba Rangtang “Revitalizing the Countryside”: Free Ranges Bring a Good Prospect of Becoming Rich. 2021. Available online: https://view.inews.qq.com/k/20210730A0630J00?web_channel=wap&openApp=false (accessed on 12 June 2022). (In Chinese).
- Niu, L.N.; Shao, Q.Q.; Ning, J.; Hang, H.B. Ecological changes and the tradeoff and synergy of ecosystem services in western China. Geogr. Res. 2022, 77, 182–195. [Google Scholar] [CrossRef]
- Liu, M.; Dong, X.; Wang, X.; Zhao, B.; Wei, H.; Fan, W.; Zhang, C. The Trade-Offs/Synergies and Their Spatial-Temporal Characteristics between Ecosystem Services and Human Well-Being Linked to Land-Use Change in the Capital Region of China. Land 2022, 11, 749. [Google Scholar] [CrossRef]
- Stow, D.; Daeschner, S.; Hope, A. Variability of the seasonally integrated normalized difference vegetation index across the north slope of Alaska in the 1990s. Int. J. Remote Sens. 2003, 24, 1111–1117. [Google Scholar] [CrossRef]
- Song, Y.M.; Chen, B.; Hung, C.H.; Mei-Po, K.; Liu, D.; Wang, F.; Wang, J.H.; Cai, J.X.; Li, X.J.; Xu, Y.; et al. Observed inequality in urban greenspace exposure in China. Environ. Int. 2021, 156, 106778. [Google Scholar] [CrossRef]
- Hu, Q.Y.; Chen, S.L. Tradeoffs-synergies Analysis among Ecosystem Services in Xiamen-Zhangzhou-Quanzhou Region. Areal Res. Dev. 2021, 40, 145–150. (In Chinese) [Google Scholar]
- Guo, X.; Tian, M.; Hong, C.Z.; Yu, R.B.; Chen, Q.L. Influence of topographic characteristics on Precipitation in Western Sichuan Plateau. Xinjiang Farm Res. Sci. Technol. 2017, 40, 40–42. (In Chinese) [Google Scholar]
- Fan, M.; Chen, L. Spatial characteristics of land uses and ecological compensations based on payment for ecosystem services model from 2000 to 2015 in Sichuan Province, China. Ecol. Inform. 2019, 50, 162–183. [Google Scholar] [CrossRef]
- Popp, J.; Pető, K.; Nagy, J. Pesticide productivity and food security. A review. Agron. Sustain. Dev. 2013, 33, 243–255. [Google Scholar] [CrossRef]
- Yang, Y.; Li, M.W.; Feng, X.M.; Yan, H.M.; Su, M.R.; Wu, M.W. Spatiotemporal variation of essential ecosystem services and their trade-off/synergy along with rapid urbanization in the Lower Pearl River Basin, China. Ecol. Indic. 2021, 133, 108439. [Google Scholar] [CrossRef]
- Xinlong People’s County Government. Outline of the 13th Five Year Plan for National Economic and Social Development of Xinlong County; Xinlong People’s County Government(Ganzi Tibetan Autonomous Prefecture, China): 2016; Volume 1. Available online: http://gzxl.gov.cn/go-a409003878.htm (accessed on 21 June 2022). (In Chinese)
- Litang County People’s Government. Outline of the 12th Five Year Plan for National Economic and Social Development of Litang County; Litang County People’s Governmen( Ganzi Tibetan Autonomous Prefecture, China)t: 2018; Volume 8. Available online: http://www.gzlt.gov.cn/ltxrmzf/c104830/202209/88147b1aef9c498896bba71d7ff005ae.shtml (accessed on 24 June 2022). (In Chinese)
- Li, Z.W.; Wang, Z.Y.; Brierley, G.; Nicoll, T.; Pan, B.Z.; Li, Y.F. Shrinkage of the Ruoergai Swamp and changes to landscape connectivity, Qinghai-Tibet Plateau. Catena 2015, 126, 155–163. [Google Scholar] [CrossRef]
- Daocheng County People’s Government. Daocheng County Does a Good Job in Ecological Restoration, Making Grassland Wetlands Become Golden Mountains and Silver Mountains; Daocheng County People’s Government(Ganzi Tibetan Autonomous Prefecture, China): 2022; Volume 4. Available online: http://www.daocheng.gov.cn/dcxrmzf/c102438/202207/b64cbf8a5ec043679880d1f105d84561.shtml (accessed on 24 June 2022). (In Chinese)
- Cao, Q.; Yu, D.; Georgescu, M.; Han, Z.; Wu, J. Impacts of land use and land cover change on regional climate: A case study in the agro-pastoral transitional zone of China. Environ. Res. Lett. 2016, 10, 124025. [Google Scholar] [CrossRef]
- Fu, B.; Xu, P.; Wang, Y.; Guo, Y. Integrating Ecosystem Services and Human Demand for a New Ecosystem Management Approach: A Case Study from the Giant Panda World Heritage Site. Sustainability 2020, 12, 295. [Google Scholar] [CrossRef]
Ecosystem Service Relationships Year | 2000 | 2010 | 2020 |
---|---|---|---|
food supply–water supply | −0.265 ** | −0.214 ** | −0.180 |
food supply–habitat quality | −0.368 ** | −0.382 ** | −0.420 ** |
food supply–soil conservation | −0.593 ** | −0.482 ** | −0.391 ** |
food supply–carbon storage | −0.299 ** | −0.311 ** | −0.109 |
water supply–habitat quality | 0.833 ** | 0.857 ** | 0.864 ** |
water supply–soil conservation | 0.826 ** | 0.812 ** | 0.822 ** |
water supply–carbon storage | 0.661 ** | 0.571 ** | 0.627 ** |
habitat quality–soil conservation | 0.841 ** | 0.810 ** | 0.819 ** |
habitat quality–carbon storage | 0.922 ** | 0.924 ** | 0.915 ** |
soil conservation–carbon storage | 0.569 ** | 0.429 ** | 0.408 ** |
Ecosystem Services | Annual Precipitation | NDVI | Mean Annual Temperature | Elevation | Slope | Population Density | Land-Use Type |
---|---|---|---|---|---|---|---|
food supply | 0.403 | 0.124 | 0.169 | 0.096 | 0.682 | 0.328 | 0.484 |
water supply | 0.967 | 0.434 | 0.523 | 0.154 | 0.649 | 0.475 | 0.018 |
habitat quality | 0.008 | 0.876 | 0.026 | 0.537 | 0.234 | 0.009 | 0.822 |
soil conservation | 0.159 | 0.228 | 0.152 | 0.018 | 0.672 | 0.097 | 0.016 |
carbon storage | 0.652 | 0.828 | 0.032 | 0.318 | 0.372 | 0.097 | 0.016 |
Interaction Type | Food Supply | Water Supply | Habitat Quality | Soil Conservation | Carbon Storage |
---|---|---|---|---|---|
AP∩NDVI | 0.319 ** | 0.969 * | 0.694 ** | 0.109 ** | 0.836 ** |
AP∩MAT | 0.434 ** | 0.971 * | 0.049 ** | 0.099* | 0.024 ** |
AP∩ELE | 0.496 * | 0.970 * | 0.358 ** | 0.090 ** | 0.350 ** |
AP∩SL | 0.722 * | 0.968 * | 0.048 ** | 0.614 * | 0.419 ** |
AP∩PD | 0.503 * | 0.970 * | 0.016 * | 0.131 ** | 0.025 ** |
AP∩LU | 0.511 * | 0.971 * | 0.700* | 0.118 ** | 0.325 ** |
NDVI∩MAT | 0.223 ** | 0.538 * | 0.127 ** | 0.101 ** | 0.337 ** |
NDVI∩ELE | 0.154 * | 0.203 ** | 0.852 * | 0.673 ** | 0.544 * |
NDVI∩SL | 0.562 * | 0.078 * | 0.612 ** | 0.829 ** | 0.723 ** |
NDVI∩PD | 0.335 * | 0.491 * | 0.090 ** | 0.132 ** | 0.233 ** |
NDVI∩LU | 0.496 * | 0.048 * | 0.863 * | 0.050 ** | 0.397 ** |
MAT∩ELE | 0.179 * | 0.551 * | 0.193 ** | 0.079 ** | 0.344 ** |
MAT∩SL | 0.562 * | 0.535 * | 0.054 * | 0.195 * | 0.022 ** |
MAT∩PD | 0.346 * | 0.627 * | 0.035 ** | 0.129 * | 0.018* |
MAT∩LU | 0.492 * | 0.533 * | 0.401 * | 0.110 ** | 0.095 ** |
ELE∩SL | 0.154 * | 0.180 * | 0.779 ** | 0.705 ** | 0.432 * |
ELE∩PD | 0.168 * | 0.504 * | 0.148 ** | 0.117 ** | 0.133 ** |
ELE∩LU | 0.512 * | 0.178 ** | 0.914 * | 0.066 ** | 0.395 ** |
SL∩PD | 0.168 * | 0.482 * | 0.037 * | 0.523 * | 0.021 ** |
SL∩LU | 0.724 * | 0.061 * | 0.840 * | 0.312 ** | 0.491 ** |
PD∩LU | 0.501 * | 0.485 * | 0.623 * | 0.172 ** | 0.292 ** |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wei, J.; Hu, A.; Gan, X.; Zhao, X.; Huang, Y. Spatial and Temporal Characteristics of Ecosystem Service Trade-Off and Synergy Relationships in the Western Sichuan Plateau, China. Forests 2022, 13, 1845. https://doi.org/10.3390/f13111845
Wei J, Hu A, Gan X, Zhao X, Huang Y. Spatial and Temporal Characteristics of Ecosystem Service Trade-Off and Synergy Relationships in the Western Sichuan Plateau, China. Forests. 2022; 13(11):1845. https://doi.org/10.3390/f13111845
Chicago/Turabian StyleWei, Jiaxin, Ang Hu, Xiaoyu Gan, Xiaodan Zhao, and Ying Huang. 2022. "Spatial and Temporal Characteristics of Ecosystem Service Trade-Off and Synergy Relationships in the Western Sichuan Plateau, China" Forests 13, no. 11: 1845. https://doi.org/10.3390/f13111845