Simulation and Analysis of Land-Use Change Based on the PLUS Model in the Fuxian Lake Basin (Yunnan–Guizhou Plateau, China)
<p>The map of the Fuxian Lake watershed.</p> "> Figure 2
<p>Changes in the number of different categories in the Fuxian Lake basin from 1990 to 2018.</p> "> Figure 3
<p>Contribution of driving factors to changes in various categories of land use.</p> "> Figure 4
<p>Spatial distribution map of land-use types in 2048. The forecast performed according to the three scenarios.</p> "> Figure 5
<p>Percentage of predicted land−use changes under different scenarios.</p> "> Figure 6
<p>Comparison of land type area in hotspots.</p> "> Figure 7
<p>Spatial distribution map of land types in hotspots of land-use changes.</p> ">
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Data Source and Processing
2.3. Research Method
2.3.1. PLUS Model and Operation Mechanism
2.3.2. Calculation of Land-Use Dynamic Degree
2.3.3. Rules for Conversion of Land-Use Types
2.4. Precision Inspection
3. Results
3.1. Analysis of Land-Use Characteristics in the River Basin
3.1.1. Analysis of Quantity and Structure Characteristics
3.1.2. Analysis of the Dynamic Degree of Land Use
3.2. PLUS Model Accuracy Verification
3.3. Driver Contribution Analysis
3.4. Land-Use Prediction Results under Multiple Scenarios
3.5. Analysis of Land-Use Change Hotspots in the Study Area
4. Discussion
4.1. Driving Forces and Suggestions for Land-Use Change
4.2. Land Change Trends and Benefits in Different Scenarios
4.3. Fuxian Lake Basin Hotspot Changes and Land-Use Suggestions
4.4. Consideration of Simulation Accuracy of Land-Use Change Based on PLUS Model
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Acknowledgments
Conflicts of Interest
References
- Wan, W.; Wei, W.; Qian, D.W.; Wei, X.X.; Feng, K. Research Progress on Environmental Effects of Land Use/Cover Change. J. Fujian Agric. For. Univ. 2017, 46, 361–372. [Google Scholar]
- Lawler, J.J.; Lewis, J.D.; Nelson, E.; Plantinga, A.J.; Polasky, S.; Withey, J.C.; Helmers, D.P.; Martinuzzi, S.; Pennington, D.; Radeloff, V.C. Projected land-use change impacts on ecosystem services in the United States. Proc. Natl. Acad. Sci. USA 2014, 111, 7492–7497. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tang, H.J.; Wu, W.B.; Yang, P.; Chen, Y.Q.; Peter, V.H. Research progress of land use/land cover change (LUCC) model. J. Geogr. 2009, 64, 456–468. [Google Scholar]
- Islam, K.; Rahman, M.F.; Jashimuddin, M. Modeling land use change using cellular automata and artificial neural network: The case of Chunati Wildlife Sanctuary, Bangladesh. Ecol. Indic. 2018, 88, 439–453. [Google Scholar] [CrossRef]
- Yang, Y.; Bao, W.; Liu, Y. Coupling coordination analysis of rural productionliving-ecological space in the beijing-tianjin-hebei region. Ecol. Indic. 2020, 117, 106512. [Google Scholar] [CrossRef]
- Zou, L.; Liu, Y.; Wang, J.; Yang, Y. An analysis of land use conflict potentials based on ecological-production-living function in the southeast coastal area of China. Ecol. Indic. 2021, 122, 107297. [Google Scholar] [CrossRef]
- Chen, S.; Liu, Y.X.; Peng, L.H. Evolutionary law and regulation mechanism of urban ecological space: Taking Nanjing as an example. J. Ecol. 2008, 28, 2270–2278. [Google Scholar]
- Zhao, M.; He, Z.; Du, J.; Chen, L.; Lin, P.; Fang, S. Assessing the effects of ecological engineering on carbon storage by linking the CA-Markov and InVEST models. Ecol. Indic. 2019, 98, 29–38. [Google Scholar] [CrossRef]
- Zheng, H.W.; Shen, G.Q.; Wang, H.; Hong, J. Simulating land use change in urban renewal areas: A case study in Hong Kong. Habitat Int. 2015, 46, 23–34. [Google Scholar] [CrossRef] [Green Version]
- Li, X.; Yeh, A.G. Modelling sustainable urban development by the integration of constrained cellular automata and GIS. Int. J. Geogr. Inf. Syst. 2000, 14, 131–152. [Google Scholar] [CrossRef]
- Wu, F. Calibration of stochastic cellular automata: The application to rural-urban land conversions. Int. J. Geogr. Inf. Sci. 2002, 16, 795–818. [Google Scholar] [CrossRef] [Green Version]
- Baig, M.F.; Mustafa, M.R.U.; Baig, I.; Takaijudin, H.B.; Zeshan, M.T. Assessment of land use land cover changes and future predictions using CA-ANN simulation for selangor, Malaysia. Water 2022, 14, 402. [Google Scholar] [CrossRef]
- Clarke, K.C.; Hoppen, S.; Gaydos, L. A self-modifying cellular automaton model of historical urbanization in the San Francisco Bay area. Environ. Plan. B Plan. Des. 1997, 24, 247–261. [Google Scholar] [CrossRef]
- Huang, D.; Huang, J.; Liu, T. Delimiting urban growth boundaries using the CLUES model with village administrative boundaries. Land Use Policy 2019, 82, 422–435. [Google Scholar] [CrossRef]
- Liu, G.; Jin, Q.; Li, J.; Li, L.; He, C.; Huang, Y.; Yao, Y. Policy factors impact analysis based on remote sensing data and the CLUE-S model in the Lijiang River Basin, China. Catena 2017, 158, 286–297. [Google Scholar] [CrossRef]
- Verburg, P.H.; Veldkamp, A. Projecting land use transitions at forest fringes in the Philippines at two spatial scales. Landsc. Ecol. 2004, 19, 77–98. [Google Scholar] [CrossRef]
- Verburg, P.H.; de Koning, G.H.J.; Kok, K.; Veldkamp, A.; Bouma, J. A spatial explicit allocation procedure for modelling the pattern of land use change based upon actual land use. Ecol. Model 1999, 1, 45–61. [Google Scholar] [CrossRef]
- Chebeane, H.; Echalier, F. Towards the use of a multi-agents event based design to improve reactivity of production systems. Comput. Ind. Eng. 1999, 37, 9–13. [Google Scholar] [CrossRef]
- Huang, Q.; Song, W.A. land-use spatial optimum allocation model coupling a multi-agent system with the shuffled frog leaping algorithm. Comput. Environ. Urban Syst. 2019, 77, 101360. [Google Scholar] [CrossRef]
- Liang, X.; Guan, Q.; Clarke, K.C.; Liu, S.; Yao, Y. Understanding the drivers of sustainable land expansion using a patch-generating land use simulation (PLUS) model: A case study in Wuhan, China. Comput. Environ. Urban Syst. 2021, 85, 101569. [Google Scholar] [CrossRef]
- Yao, Y.; Liu, X.; Li, X.; Liu, P.; Hong, Y.; Zhang, Y.; Mai, K. Simulating urban land-use changes at a large scale by integrating dynamic land parcel subdivision and vector-based cellular automata. Int. J. Geogr. Inf. Sci. 2017, 31, 2452–2479. [Google Scholar] [CrossRef]
- Liu, S.; Su, H.; Cao, G.; Wang, S.; Guan, Q. Learning from data: A post classification method for annual land cover analysis in urban areas. ISPRS J. Photogramm. Remote Sens. 2019, 154, 202–215. [Google Scholar] [CrossRef]
- Gharaibeh, A.; Shaamala, A.; Obeidat, R.; Al-Kofahi, S. Improving land-use change modeling by integrating ANN with Cellular Automata-Markov Chain model. Heliyon 2020, 6, e05092. [Google Scholar] [CrossRef] [PubMed]
- Verburg, P.H.; Soepboer, W.; Veldkamp, A.; Limpiada, R.; Espaldon, V.; Mastura, S.S. Modeling the spatial dynamics of regional land use: The CLUE-S model. Environ. Manag. 2002, 30, 391–405. [Google Scholar] [CrossRef] [PubMed]
- Liu, X.P.; Liang, X.; Li, X.; Xu, X.; Ou, J.P.; Chen, Y.M.; Li, S.Y.; Wang, S.J.; Pei, F.S. A future land use simulation model (FLUS) for simulating multiple land use scenarios by coupling human and natural effects. Landsc. Urban Plan 2017, 168, 94–116. [Google Scholar] [CrossRef]
- Li, C.; Gao, B.B.; Wu, Y.M.; Zheng, K.J.; Wu, Y. Dynamic simulation of ecological risk of mountain town landscape based on PLUS model. J. Zhejiang Agric. For. Univ. 2022, 39, 84–94. [Google Scholar] [CrossRef]
- Hu, F.; Zhang, Y.; Guo, Y.; Zhang, P.P.; Lu, S.; Zhang, C.C. Spatial and temporal changes and prediction of land use and habitat quality in the Weihe River basin based on PLUS and InVEST models. Geogr. Arid. Areas 2022, 45, 1125–1136. [Google Scholar]
- Wang, J.; Zhang, J.; Xiong, N.; Liang, B.Y.; Wang, Z.; Cressey, E.L. Spatial and Temporal Variation, Simulation and Prediction of Land Use in Ecological Conservation Area of Western Beijing. Remote Sens. 2022, 14, 1452. [Google Scholar] [CrossRef]
- Yang, L.W.; Zhao, J.; Zhu, J.T.; Liu, L.; Zhang, P. Spatial and temporal variation and prediction of ecosystem carbon storage in Xian based on PLUS and InVEST model. Remote Sens. Nat. Resour. 2022, 19, 16059. [Google Scholar]
- Zhang, S.; Yang, P.; Xia, J.; Wang, W.; Cai, W.; Chen, N.; Zhan, C. Land use/land cover prediction and analysis of the middle reaches of the Yangtze River under different scenarios. Sci. Total Environ. 2022, 833, 155238. [Google Scholar] [CrossRef] [PubMed]
- Gao, L.; Tao, F.; Liu, R.R.; Wang, Z.L.; Leng, H.J.; Zhou, T. Multi-scenario simulation and ecological risk analysis of land use based on the PLUS model: A case study of Nanjing. Sustain. Cities Soc. 2022, 85, 104055. [Google Scholar] [CrossRef]
- Yang, S.; Su, H. Multi-Scenario simulation of ecosystem service values in the Guanzhong Plain Urban Agglomeration, China. Sustainability 2022, 14, 8812. [Google Scholar] [CrossRef]
- Du, Y.; Li, X.; He, X.; Li, X.P.; Yang, G.; Li, D.B.; Xu, W.B.; Qiao, X.; Li, C.; Sui, L. Multi-Scenario Simulation and Trade-Off Analysis of Ecological Service Value in the Manas River Basin Based on Land Use Optimization in China. Int. J. Environ. Res. Public Health 2022, 19, 6216. [Google Scholar] [CrossRef] [PubMed]
- Zhao, Z.; Fan, B.L.; Zhou, Q.B.; Xu, S.H. Simulating the Coupling of Rural Settlement Expansion and Population Growth in Deqing, Zhejiang Province, Based on MCCA Modeling. Land 2022, 11, 1975. [Google Scholar] [CrossRef]
- Du, J.F.; Thill, J.C.; Peiser, R.B.; Feng, C.; Chun, C.C. Urban land market and land-use changes in post-reform China: A case study of Beijing. Landsc. Urban Plan 2014, 124, 118–128. [Google Scholar] [CrossRef]
- Zheng, X.Q.; Zhao, L.; Xiang, W.N.; Li, N.; Lv, L.N.; Yang, X. A coupled model for simulating spatio-temporal dynamics of land-use change: A case study in Changqing, Jinan, China. Landsc. Urban Plan 2012, 106, 51–61. [Google Scholar] [CrossRef]
- Liu, T.; Yang, X.J. Monitoring land changes in an urban area using satellite imagery, GIS and landscape metrics. Appl. Geogr. 2015, 56, 42–54. [Google Scholar] [CrossRef]
- Gao, B.P.; Li, C.; Wu, Y.M.; Zheng, K.J.; Wu, Y. Landscape ecological risk assessment and influencing factors in ecological conservation area in Sichuan-Yunnan provinces, China. Ying Yong Sheng Tai Xue Bao 2021, 32, 1603–1613. [Google Scholar]
- China Academy of Building Sciences. Overall Planning of Fuxian Lake National Wetland Park in Yuxi, Yunnan (Overall Planning of Fuxian Lake National Wetland Park in 2016); China Academy of Building Sciences: Beijing, China, 2015. [Google Scholar]
- Chen, J.Z.; He, C.; Yue, C.R. Atmospheric correction of an advance land imager (ALI) image based on the FLAASH module. J. Zhejiang A F Univ. 2011, 28, 590–596. [Google Scholar]
- Liu, H.; Xiao, W.; Li, Q.; Tian, Y.; Zhu, J. Spatio-Temporal Change of Multiple Ecosystem Services and Their Driving Factors: A Case Study in Beijing, China. Forests 2022, 13, 260. [Google Scholar] [CrossRef]
- Jiang, X.F.; Duan, H.C.; Liao, J.; Song, X.; Xue, X. Multimodelbased Simulation of Different Landuse Scenarios in Gan-Lin-Gao Area in Middle Reaches of Heihe River. Trans. Chin. Soc. Agric. Mach. 2022, 53, 178–188. [Google Scholar]
- Sun, D.Z.; Liang, Y.J. Multi scenario simulation of land use on the Loess Plateau based on improved Markov CA model. J. Earth Inf. Sci. 2021, 23, 825–836. [Google Scholar]
- Tian, J.F.; Wang, B.Y.; Cheng, L.S.; Wang, S.J. The process and mechanism of regional land use transition guided by policy: A case study of Northeast China. Geogr. Res. 2020, 39, 805–821. [Google Scholar]
- Yang, H.R.; Wang, H.Y.; Peng, W.F.; Ren, G.Y. Study on the spatio-temporal dynamic change of regional land use/cover -- Taking Jintang County, Sichuan Province as an example. China Agric. Resour. Zoning 2016, 37, 37–46. [Google Scholar]
- Li, X.L.; Cheng, C.X.; Chen, C. Cross administrative region spatial integration method of land use dynamics -- Taking Fangshan District, Beijing as an example. Geogr. Geogr. Inf. Sci. 2014, 30, 56–58+72+127. [Google Scholar]
- Luo, G.P.; Yin, C.Y.; Chen, X.; Xu, W.Q.; Lu, L. Combining system dy-namic model and CLUE-S model to improve land use sce-nario analyses at regional scale: A case study of Sangong watershed in Xinjiang, China. Ecol. Complex. 2010, 7, 198–207. [Google Scholar] [CrossRef]
- Koomen, E.; Pontius, R.; Boersma, W.; Castella, J.C.; Clarke, K.; de Nijs, T.; Dietzel, C.; Duan, Z.Q.; Fotsing, E.; Goldstein, N.; et al. Comparing the in-put, output, and validation maps for several models of land change. Ann. Reg. Sci. 2008, 42, 11–37. [Google Scholar]
- Zhang, H.Q.; Ren, T. Study on Spatial Pattern Evolution Characteristics and Driving Forces Based on PLUS Model: Taking Beizhen City in Liaoning Province as an Example. J. Shenyang Jianzhu Univ. 2022, 24, 230–238. [Google Scholar]
- Yao, Z.; Jiang, C.; Shan-shan, F. Effects of urban growth boundaries on urban spatial structural and ecological functional optimization in the Jining Metropolitan Area, China. Land Use Policy 2022, 117, 106113. [Google Scholar] [CrossRef]
- Duan, Y.; Tang, J.; Li, Z.; Yang, Y.; Dai, C.; Qu, Y.K.; Lv, H. Optimal Planning and Management of Land Use in River Source Region: A Case Study of Songhua River Basin, China. Int. J. Environ. Res. Public Health 2022, 19, 6610. [Google Scholar] [CrossRef]
- Shen, Z.; Wu, W.; Chen, S.; Tian, S.Q.; Wang, J.; Li, L.J. A static and dynamic coupling approach for maintaining ecological networks connectivity in rapid urbanization contexts. J. Clean. Prod. 2022, 369, 133375. [Google Scholar] [CrossRef]
- Deng, Z.; Quan, B. Intensity Characteristics and Multi-Scenario Projection of Land Use and Land Cover Change in Hengyang, China. Int. J. Environ. Res. Public Health 2022, 19, 8491. [Google Scholar] [CrossRef] [PubMed]
- Li, C.D.; Yang, M.Y.; Li, Z.B.; Wang, B.Q. How will rwandan land use/land cover change under high population pressure and changing climate? Appl. Sci. 2021, 11, 5376. [Google Scholar] [CrossRef]
- Bao, S.; Yang, F. Spatio-Temporal Dynamic of the Land Use/Cover Change and Scenario Simulation in the Southeast Coastal Shelterbelt System Construction Project Region of China. Sustainability 2022, 14, 8952. [Google Scholar] [CrossRef]
Study Period | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 |
---|---|---|---|---|---|---|---|---|---|---|---|---|
1990–1995 | 3.76 | −0.49 | 13.47 | 0.54 | 0.00 | 3.94 | 3.16 | 3.68 | −0.94 | −0.35 | 2.13 | −1.35 |
1995–2000 | 5.15 | 1.47 | 5.37 | −1.56 | 0.00 | 31.61 | −0.25 | 0.56 | 0.53 | −0.33 | 0.17 | −1.95 |
2000–2005 | 0.66 | 2.32 | −0.25 | −3.34 | −0.01 | 7.60 | 5.02 | 2.86 | −0.70 | 0.37 | −0.17 | −0.35 |
2005–2010 | 2.18 | −0.46 | 0.99 | −2.32 | 0.00 | 0.05 | 16.63 | −0.29 | 4.77 | 0.69 | −2.77 | 0.40 |
2010–2018 | 2.90 | −0.69 | −2.62 | −2.32 | 0.00 | 14.86 | 4.49 | 9.93 | 6.16 | −0.10 | 8.00 | 6.17 |
Scenario Type | Land Category in 2018 | Land Category in 2048 | Total | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | |||
Production protection scenario | Construction land for urban and rural residents | 1892.38 | 9.80 | 25.21 | 1.72 | 133.21 | 11.85 | 69.31 | 1.03 | 20.94 | 14.79 | 64.64 | 2244.88 | |
Farmland | 6.81 | 12,352.94 | 0.44 | 7.30 | 8.13 | 3.09 | 1.15 | 0.89 | 27.40 | 1.19 | 1.35 | 12,410.69 | ||
Industrial and mining construction land | 0.99 | 200.47 | 4.39 | 7.21 | 8.05 | 0.31 | 16.40 | 237.81 | ||||||
Shrub forest land | 0.81 | 90.58 | 0.48 | 5808.31 | 0.56 | 210.43 | 203.88 | 0.59 | 36.06 | 390.39 | 5.31 | 56.50 | 6803.90 | |
Lake | 0.56 | 0.41 | 21,623.80 | 0.65 | 0.19 | 0.25 | 0.03 | 11.36 | 21,637.26 | |||||
Transportation Land | 25.93 | 7.28 | 6.08 | 2.33 | 0.99 | 357.38 | 7.81 | 8.51 | 0.24 | 16.39 | 2.39 | 16.77 | 452.09 | |
Grassland | 0.03 | 5.43 | 0.18 | 10.72 | 5.85 | 654.16 | 0.09 | 0.92 | 70.38 | 0.99 | 1.11 | 749.85 | ||
Other construction land | 10.61 | 2.29 | 16.73 | 0.11 | 62.00 | 1.60 | 654.39 | 0.32 | 25.75 | 2.90 | 7.73 | 784.45 | ||
Other forest land | 0.64 | 1.86 | 0.12 | 3.19 | 0.13 | 1.23 | 0.13 | 2380.08 | 12.11 | 0.02 | 0.14 | 2399.64 | ||
Arbor forest land | 3.24 | 434.55 | 4.90 | 610.73 | 0.17 | 28.30 | 222.13 | 3.19 | 95.24 | 18,162.93 | 36.81 | 27.91 | 19,630.08 | |
Artificial wetland | 0.04 | 1.78 | 28.86 | 0.24 | 8.84 | 0.13 | 60.03 | 193.18 | 2.16 | 295.25 | ||||
Swamp wetland | 2.96 | 0.89 | 2.09 | 4.45 | 6.69 | 0.01 | 0.23 | 0.11 | 3.59 | 0.05 | 1058.01 | 1079.07 | ||
Total | 1944.00 | 12,908.40 | 212.66 | 6520.26 | 21,631.80 | 820.22 | 1122.63 | 737.91 | 2515.20 | 18,806.56 | 257.66 | 1247.67 | 68,724.96 | |
Natural development scenario | Construction land for urban and rural residents | 2071.95 | 18.21 | 10.52 | 1.50 | 2.41 | 15.82 | 7.68 | 0.80 | 9.31 | 13.76 | 92.93 | 2244.88 | |
Farmland | 51.76 | 12,280.73 | 1.49 | 8.10 | 11.58 | 4.83 | 3.24 | 3.82 | 40.89 | 2.05 | 2.21 | 12,410.69 | ||
Industrial and mining construction land | 2.04 | 225.36 | 0.49 | 0.45 | 0.18 | 0.07 | 0.54 | 8.67 | 237.81 | |||||
Shrub forest land | 246.62 | 98.07 | 18.26 | 5546.92 | 0.83 | 151.83 | 286.99 | 100.89 | 35.12 | 235.15 | 5.34 | 77.87 | 6803.89 | |
Lake | 2.28 | 0.69 | 21,622.20 | 0.45 | 0.47 | 0.06 | 0.23 | 0.03 | 10.91 | 21,637.31 | ||||
Transportation Land | 88.29 | 14.53 | 0.37 | 2.34 | 1.07 | 290.02 | 11.69 | 10.77 | 0.26 | 14.07 | 2.16 | 16.54 | 452.09 | |
Grassland | 1.94 | 9.75 | 4.62 | 7.96 | 5.06 | 666.72 | 3.56 | 1.09 | 47.00 | 1.15 | 1.00 | 749.85 | ||
Other construction land | 190.55 | 4.08 | 10.58 | 0.49 | 12.52 | 1.94 | 528.63 | 0.48 | 19.09 | 2.50 | 13.59 | 784.45 | ||
Other forest land | 1.03 | 3.47 | 0.16 | 3.41 | 0.09 | 1.45 | 0.30 | 2376.47 | 13.12 | 0.00 | 0.14 | 2399.64 | ||
Arbor forest land | 87.91 | 474.23 | 22.07 | 351.56 | 0.26 | 21.15 | 121.63 | 31.45 | 95.31 | 18,381.60 | 17.79 | 25.10 | 19,630.06 | |
Artificial wetland | 10.66 | 2.54 | 24.74 | 0.97 | 11.02 | 30.08 | 27.06 | 183.31 | 4.86 | 295.25 | ||||
Swamp wetland | 57.31 | 1.25 | 1.99 | 5.21 | 3.71 | 0.05 | 3.28 | 0.23 | 3.55 | 0.02 | 1002.48 | 1079.07 | ||
Total | 2810.27 | 12,908.90 | 272.34 | 5969.31 | 21,631.55 | 500.24 | 1122.32 | 720.41 | 2514.18 | 18,799.73 | 228.12 | 1247.62 | 68,724.99 | |
Ecological protection scenario | Construction land for urban and rural residents | 1999.61 | 115.40 | 9.86 | 0.76 | 19.10 | 3.90 | 11.88 | 0.53 | 28.29 | 2.18 | 53.39 | 2244.88 | |
Farmland | 850.99 | 10,741.43 | 4.77 | 57.81 | 0.13 | 216.62 | 51.82 | 46.72 | 2.30 | 383.04 | 33.59 | 21.44 | 12,410.68 | |
Industrial and mining construction land | 23.43 | 188.93 | 2.13 | 0.66 | 1.56 | 0.06 | 0.35 | 20.69 | 237.81 | |||||
Shrub forest land | 1.28 | 7.18 | 0.54 | 6163.20 | 0.41 | 1.00 | 40.57 | 0.83 | 35.52 | 499.31 | 0.46 | 53.60 | 6803.90 | |
Lake | 0.32 | 0.20 | 0.36 | 21,624.10 | 0.22 | 0.08 | 0.25 | 11.74 | 21,637.27 | |||||
Transportation Land | 45.41 | 45.27 | 0.67 | 3.27 | 0.54 | 306.39 | 2.07 | 6.96 | 0.04 | 23.18 | 1.27 | 17.01 | 452.09 | |
Grass land | 0.25 | 4.87 | 0.21 | 14.50 | 0.83 | 624.55 | 0.13 | 1.00 | 102.19 | 0.60 | 0.70 | 749.85 | ||
Other construction land | 21.58 | 34.55 | 3.96 | 0.14 | 15.23 | 0.17 | 667.95 | 0.27 | 33.81 | 0.71 | 6.08 | 784.45 | ||
Other forest land | 0.51 | 1.42 | 0.10 | 2.97 | 0.00 | 1.00 | 0.07 | 2383.64 | 9.70 | 0.00 | 0.22 | 2399.64 | ||
Arbor forest land | 5.74 | 39.68 | 0.96 | 399.10 | 0.09 | 2.67 | 159.13 | 2.99 | 89.68 | 18,884.61 | 25.45 | 19.95 | 19,630.05 | |
Artificial wetland | 0.20 | 0.85 | 3.01 | 0.04 | 2.05 | 0.31 | 61.32 | 225.55 | 1.92 | 295.25 | ||||
Swamp wetland | 3.42 | 1.11 | 2.12 | 4.15 | 0.67 | 0.05 | 0.34 | 0.23 | 4.09 | 0.01 | 1062.88 | 1079.07 | ||
Total | 2929.30 | 11,015.40 | 196.19 | 6662.28 | 21,630.34 | 563.43 | 886.88 | 738.32 | 2513.56 | 20,050.49 | 289.82 | 1248.92 | 68,724.94 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ma, G.; Li, Q.; Zhang, J.; Zhang, L.; Cheng, H.; Ju, Z.; Sun, G. Simulation and Analysis of Land-Use Change Based on the PLUS Model in the Fuxian Lake Basin (Yunnan–Guizhou Plateau, China). Land 2023, 12, 120. https://doi.org/10.3390/land12010120
Ma G, Li Q, Zhang J, Zhang L, Cheng H, Ju Z, Sun G. Simulation and Analysis of Land-Use Change Based on the PLUS Model in the Fuxian Lake Basin (Yunnan–Guizhou Plateau, China). Land. 2023; 12(1):120. https://doi.org/10.3390/land12010120
Chicago/Turabian StyleMa, Guoqiang, Qiujie Li, Jinxiu Zhang, Lixun Zhang, Hua Cheng, Zhengping Ju, and Guojun Sun. 2023. "Simulation and Analysis of Land-Use Change Based on the PLUS Model in the Fuxian Lake Basin (Yunnan–Guizhou Plateau, China)" Land 12, no. 1: 120. https://doi.org/10.3390/land12010120