[go: up one dir, main page]

Skip to content
Licensed Unlicensed Requires Authentication Published by De Gruyter August 23, 2024

Simulation of doubly stochastic Poisson point processes and application to nucleation of nanocrystals and evaluation of exciton fluxes

  • Karl K. Sabelfeld ORCID logo EMAIL logo and Stepan Glazkov

Abstract

In this study we solve the following problem: Simulate random 2D Poisson point processes with a desired correlation function. To solve this problem we suggest the following algorithm: (1) simulate a positive valued random process with the desired correlation function, (2) use this process as an intensity of the doubly stochastic Poisson random point process. We apply this algorithm to simulate random distribution of nanocrystals on a plane. Then we apply the developed methods to calculate excitonic fluxes to the family of generated nanocrystals.

MSC 2020: 65C05; 65C20; 82D37

Award Identifier / Grant number: 24-11-00107

Funding statement: Support of the Russian Science Foundation under Grant 24-11-00107 is gratefully acknowledged

References

[1] S. Basu and A. Dassios, A Cox process with log-normal intensity, Insurance Math. Econom. 31 (2002), no. 2, 297–302. 10.1016/S0167-6687(02)00152-XSearch in Google Scholar

[2] Y. Chen, Thinning algorithms for simulating point processes, Talk, Florida State University, Tallahassee, 2016. Search in Google Scholar

[3] D. R. Cox and V. Isham, Point Processes, Monogr. Appl. Probab. Statist., Chapman & Hall, London, 1980. Search in Google Scholar

[4] L. Devroye, The series method for random variate generation and its application to the Kolmogorov–Smirnov distribution, Amer. J. Math. Manag. Sci. 1 (1981), no. 4, 359–379. 10.1080/01966324.1981.10737080Search in Google Scholar

[5] F. Feix, T. Flissikowski, K. K. Sabelfeld, V. M. Kaganer, M. Wölz, L. Geelhaar, H. T. Grahn and O. Brandt, Ga-polar (In, Ga)N/GaN quantum wells versus N-polar (In, Ga) N quantum disks in GaN nanowires: A comparative analysis of carrier recombination, diffusion, and radiative efficiency, Phys. Rev. Appl. 8 (2017), Article ID 014032. 10.1103/PhysRevApplied.8.014032Search in Google Scholar

[6] D. Grebenkov, Efficient Monte Carlo methods for simulating diffusion-reaction processes in complex systems, First-Passage Phenomena and Their Applications, World Scientific, Hackensack (2014), 571–595. 10.1142/9789814590297_0023Search in Google Scholar

[7] J. Lähnemann, V. M. Kaganer, K. K. Sabelfeld, A. E. Kireeva, U. Jahn, C. Cheze, R. Calarco and O. Brandt, Carrier diffusion in GaN: A cathodoluminescence study. III: Nature of nonradiative recombination at threading dislocations, Phys. Rev. Appl. 17 (2022), no. 2, Article ID 024019. 10.1103/PhysRevApplied.17.024019Search in Google Scholar

[8] O. N. Oliveira, Jr., L. Caseli and K. Ariga, The past and the future of Langmuir and Langmuir–Blodgett films, Chem. Rev. 122 (2022), no. 6, 6459–6513. 10.1021/acs.chemrev.1c00754Search in Google Scholar PubMed

[9] K. K. Sabelfeld, Monte Carlo Methods in Boundary Value Problems, Springer Ser. Comput. Math., Springer, Berlin, 1991. 10.1007/978-3-642-75977-2Search in Google Scholar

[10] K. K. Sabelfeld, Random Fields and Stochastic Lagrangian Models, Walter de Gruyter, Berlin, 2012. 10.1515/9783110296815Search in Google Scholar

[11] K. K. Sabelfeld, Random walk on spheres algorithm for solving transient drift-diffusion-reaction problems, Monte Carlo Methods Appl. 23 (2017), no. 3, 189–212. 10.1515/mcma-2017-0113Search in Google Scholar

[12] K. Svit, K. Zhuravlev, S. Kireev and K. K. Sabelfeld, A stochastic model, simulation, and application to aggregation of cadmium sulfide nanocrystals upon evaporation of the Langmuir–Blodgett matrix, Monte Carlo Methods Appl. 27 (2021), no. 4, 289–299. 10.1515/mcma-2021-2100Search in Google Scholar

Received: 2024-05-19
Revised: 2024-08-03
Accepted: 2024-08-05
Published Online: 2024-08-23
Published in Print: 2024-09-01

© 2024 Walter de Gruyter GmbH, Berlin/Boston

Downloaded on 21.2.2025 from https://www.degruyter.com/document/doi/10.1515/mcma-2024-2014/html
Scroll to top button