Abstract
Random walk based stochastic simulation methods for solving a nonlinear system of coupled transient diffusion and drift-diffusion equations governing a two-component chemotaxis process are developed. The nonlinear system is solved by linearization, the system is evolved in time, by small time steps, where on each step a linear system of equations is solved by using the solution from the previous time step. Three different stochastic algorithms are suggested, (1) the global random walk on grid (GRWG), (2) a randomized vector algorithm (RVA) based on a special transformation of the original matrix to a stochastic matrix, and (3) a stochastic projection algorithm (SPA). To get high precision results, these methods are combined with an iterative refinement method.
Funding source: Russian Science Foundation
Award Identifier / Grant number: 24-11-00107
Funding statement: Support of the Russian Science Foundation under Grant 24-11-00107 is gratefully acknowledged.
References
[1] H. Amann, Eine Monte-Carlo-Methode mit Informationsspeicherung zur Lösung von elliptischen Randwertproblemen, Z. Wahrscheinlichkeitstheorie Verw. Geb. 8 (1967), 117–130. 10.1007/BF00536914Search in Google Scholar
[2] G. Arumugam and J. Tyagi, Keller–Segel chemotaxis models: A review, Acta Appl. Math. 171 (2021), Paper No. 6. 10.1007/s10440-020-00374-2Search in Google Scholar
[3] A. F. Cheshkova, Global estimate of the solution of the Dirichlet problem for the Helmholtz n-dimensional equation by the Monte Carlo method, Russian J. Numer. Anal. Math. Modelling 10 (1995), no. 6, 495–510. 10.1515/rnam.1995.10.6.495Search in Google Scholar
[4] A. Codutti, K. Bente, D. Faivre and S. Klumpp, Chemotaxis in external fields: Simulations for active magnetic biological matter, PLoS Comput. Biol. 15 (2019), no. 12, Article ID e1007548. 10.1371/journal.pcbi.1007548Search in Google Scholar PubMed PubMed Central
[5] J. Haškovec and C. Schmeiser, Stochastic particle approximation for measure valued solutions of the 2D Keller–Segel system, J. Stat. Phys. 135 (2009), no. 1, 133–151. 10.1007/s10955-009-9717-1Search in Google Scholar
[6] T. Hillen and K. J. Painter, A user’s guide to PDE models for chemotaxis, J. Math. Biol. 58 (2009), no. 1–2, 183–217. 10.1007/s00285-008-0201-3Search in Google Scholar PubMed
[7] D. Horstmann, From 1970 until present: The Keller–Segel model in chemotaxis and its consequences. I, Jahresber. Dtsch. Math.-Ver. 105 (2003), no. 3, 103–165. Search in Google Scholar
[8] S. Kawaguchi, Chemotaxis-growth under the influence of lateral inhibition in a three-component reaction-diffusion system, Nonlinearity 24 (2011), no. 4, 1011–1031. 10.1088/0951-7715/24/4/002Search in Google Scholar
[9] E. F. Keller and L. A. Segel, Models of chemotaxis, J. Theoret. Biol. 30 (1971), 225–234. 10.1016/0022-5193(71)90050-6Search in Google Scholar PubMed
[10] K. J. Painter, Mathematical models for chemotaxis and their applications in self-organisation phenomena, J. Theoret. Biol. 481 (2019), 162–182. 10.1016/j.jtbi.2018.06.019Search in Google Scholar PubMed
[11] K. K. Sabelfeld, Monte Carlo Methods in Boundary Value Problems, Springer Ser. Comput. Phys., Springer, Berlin, 1991. 10.1007/978-3-642-75977-2Search in Google Scholar
[12] K. K. Sabelfeld, Vector Monte Carlo stochastic matrix-based algorithms for large linear systems, Monte Carlo Methods Appl. 22 (2016), no. 3, 259–264. 10.1515/mcma-2016-0112Search in Google Scholar
[13] K. K. Sabelfeld, A new randomized vector algorithm for iterative solution of large linear systems, Appl. Math. Lett. 126 (2022), Article ID 107830. 10.1016/j.aml.2021.107830Search in Google Scholar
[14] K. K. Sabelfeld and O. Bukhasheev, Global random walk on grid algorithm for solving Navier–Stokes and Burgers equations, Monte Carlo Methods Appl. 28 (2022), no. 4, 293–305. 10.1515/mcma-2022-2126Search in Google Scholar
[15] K. K. Sabelfeld and A. E. Kireeva, Discrete stochastic modeling of electron and hole recombination in 2D and 3D inhomogeneous semiconductors, J. Comput. Electron 16 (2017), no. 2, 325–339. 10.1007/s10825-017-0961-3Search in Google Scholar
[16] K. K. Sabelfeld and A. Kireeva, Randomized vector iterative linear solvers of high precision for large dense system, Monte Carlo Methods Appl. 29 (2023), no. 4, 323–332. 10.1515/mcma-2023-2013Search in Google Scholar
[17] K. K. Sabelfeld and N. Loshchina, Stochastic iterative projection methods for large linear systems, Monte Carlo Methods Appl. 16 (2010), no. 3–4, 343–359. 10.1515/mcma.2010.020Search in Google Scholar
[18] K. K. Sabelfeld and N. S. Mozartova, Sparsified randomization algorithms for low rank approximations and applications to integral equations and inhomogeneous random field simulation, Math. Comput. Simulation 82 (2011), no. 2, 295–317. 10.1016/j.matcom.2011.08.002Search in Google Scholar
[19] K. K. Sabelfeld and D. Smirnov, A global random walk on grid algorithm for second order elliptic equations, Monte Carlo Methods Appl. 27 (2021), no. 3, 211–225. 10.1515/mcma-2021-2092Search in Google Scholar
[20] T. Strohmer and R. Vershynin, A randomized Kaczmarz algorithm with exponential convergence, J. Fourier Anal. Appl. 15 (2009), no. 2, 262–278. 10.1007/s00041-008-9030-4Search in Google Scholar
[21] A. F. Voter, Introduction to the kinetic Monte Carlo method, Radiation Effects in Solids, NATO Sci. Ser., Springer, Berlin (2007), 1–23. 10.1007/978-1-4020-5295-8_1Search in Google Scholar
[22] A. J. Walker, New fast method for generating discrete random numbers with arbitrary frequency distributions, Electr. Lett. 10 (1974), no. 8, 127–128. 10.1049/el:19740097Search in Google Scholar
[23] C. C. N. Wang, K.-L. Ng, Y.-C. Chen, P. C. Y. Sheu and J. J. P. Tsai, Simulation of bacterial chemotaxis by the random run and tumble model, 11th IEEE International Conference on Bioinformatics and Bioengineering, IEEE Press, Piscataway (2011), 228–233. 10.1109/BIBE.2011.41Search in Google Scholar
[24] X. Xiao, X. Feng and Y. He, Numerical simulations for the chemotaxis models on surfaces via a novel characteristic finite element method, Comput. Math. Appl. 78 (2019), no. 1, 20–34. 10.1016/j.camwa.2019.02.004Search in Google Scholar
© 2024 Walter de Gruyter GmbH, Berlin/Boston