[go: up one dir, main page]

Skip to main content

Advertisement

Log in

An optional remote state preparation protocol for a four-qubit entangled state

  • Published:
Quantum Information Processing Aims and scope Submit manuscript

    We’re sorry, something doesn't seem to be working properly.

    Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Abstract

In this paper, we introduce a remote state preparation protocol for the case of a known four-qubit entangled state in which there are two possible receivers and the sender has the option of choosing one of the two possible parties for a preparation of the intended state at the end of the chosen party. The sender begins with a measurement on a two-qubit system in which the measurement basis is chosen by using the known information of the state. After that she exercises her option which is exclusively her own prerogative. The protocol has four components depending on the four different measurement results of the sender. The scheme is compared in terms of efficiency with other contemporary remote state preparation protocols for similar purposes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

References

  1. Bennett, C.H., Brassard, G., Crepeau, C., Jozsa, R., Peres, A., Wootters, W.K.: Teleporting an unknown quantum state via dual classical and Einstein-Podolsky-Rosen channels. Phys. Rev. Lett. 70, 1895–1899 (1993)

    Article  ADS  MathSciNet  Google Scholar 

  2. Lo, H.K.: Classical-communication cost in distributed quantum-information processing. A generalization of quantum-communication complexity. Phys. Rev. A 62, 012313 (2000)

    Article  ADS  Google Scholar 

  3. Pati, A.K.: Minimum classical bit for remote preparation and measurement of a qubit. Phys. Rev. A 63, 014302 (2001)

    Article  ADS  Google Scholar 

  4. Hillery, M., Buzek, V., Berthiaume, A.: Quantum secret sharing. Phys. Rev. A 59(3), 1829 (1990)

    Article  ADS  MathSciNet  Google Scholar 

  5. Yang, Y.G., Wen, Q.Y., Zhu, F.C.: An efficient two-step quantum key distribution protocol with orthogonal product states. Chin. Phys. B 16, 910–914 (2007)

    Article  Google Scholar 

  6. Zhang, Z.J., Man, Z.X.: Many-agent controlled teleportation of multi-qubit quantum information. Phys. Lett. A 341(1), 55–59 (2005)

    Article  ADS  Google Scholar 

  7. Yang, K., Huang, L., Yang, L.W.: Quantum teleportation via GHZ-like state. Int. J. Theor. Phys. 48, 516–521 (2008)

    Article  MathSciNet  Google Scholar 

  8. Choudhury, B.S., Samanta, S.: Simultaneous perfect teleportation of three 2-qubit states. Quantum Inf. Process. 16, 230 (2017). https://doi.org/10.1007/s11128-017-1680-1

    Article  ADS  MathSciNet  MATH  Google Scholar 

  9. Yan, A.: Bidirectional controlled teleportation via six-qubit cluster state. Int. J. Theor. Phys. 52, 3870–3873 (2013). https://doi.org/10.1007/s10773-013-1694-0

    Article  MathSciNet  MATH  Google Scholar 

  10. Li, D., Cao, Z.: Teleportation of two-particle entangled state via cluster state. Commun. Theor. Phys. 47, 464–466 (2007)

    Article  ADS  Google Scholar 

  11. Yu, L.Z., Wu, T.: Probabilistic teleportation of three-qubit entangled state via five-qubit cluster state. Int. J. Theor. Phys. 52(5), 1461–1465 (2013)

    Article  MathSciNet  Google Scholar 

  12. Yang, Y.-Q., Zha, X.-W., Yu, Y.: Asymmetric bidirectional controlled teleportation via seven-qubit cluster state. Int. J. Theor. Phys. 55, 4197–4204 (2016). https://doi.org/10.1007/s10773-016-3044-5

    Article  MATH  Google Scholar 

  13. Nandi, K., Mazumdar, C.: Quantum teleportation of a two qubit state using GHZ-like state. Int. J. Theor. Phys. 53, 1322–1324 (2014)

    Article  Google Scholar 

  14. Choudhury, B.S., Samanta, S.: A multi-hop teleportation protocol of arbitrary four-qubit states through intermediate nodes. Int. J. Quant. Inf. 16(3), 1850026 (2018)

    Article  MathSciNet  Google Scholar 

  15. Bennett, C.H., Divincenzo, D.P., Shor, P.W., Smolin, J.A., Terhal, B.M., Wootters, W.K.: Remote state preparation. Phys. Rev. Lett. 87, 077902 (2001)

    Article  ADS  Google Scholar 

  16. Wang, D., Liu, Y-m, Zhang, Z-j: Remote preparation of a class of three-qubit states. Opt. Commun. 281, 871–875 (2008)

    Article  ADS  Google Scholar 

  17. Wang, D., Ye, L.: Optimizing scheme for remote preparation of four-particle cluster-like entangled states. Int. J. Theor. Phys. 50, 2748–2757 (2011). https://doi.org/10.1007/s10773-011-0774-2

    Article  MATH  Google Scholar 

  18. Zhan, Y.-B., Fu, H., Li, X.-W., Ma, P.-C.: Deterministic remote preparation of a four-qubit cluster-type entangled state. Int. J. Theor. Phys. 52, 2615–2622 (2013)

    Article  MathSciNet  Google Scholar 

  19. Wang, D.: Remote preparation of an arbitrary two-particle pure state via nonmaximally entangled states and positive operator-valued measurement. Int. J. Quantum Inf. 8(8), 1265–1275 (2010)

    Article  Google Scholar 

  20. Zhao, S.-Y., Fu, H., Li, X.-W., Chen, G.-B., Ma, P.-C., Zhan, Y.-B.: Efficient and economic schemes for remotely preparing a four-qubit cluster-type entangled state. Int. J. Theor. Phys. 53, 2485–2491 (2014)

    Article  Google Scholar 

  21. Ma, S.-Y., Chen, W.-L., Qu, Z.-G., Tang, P.: Controlled remote preparation of an arbitrary four-qubit \(\chi \)-state via partially entangled channel. Int. J. Theor. Phys. 56, 1653–1664 (2017)

    Article  Google Scholar 

  22. Yuan, H., Liu, Y.M., Zhang, W., Zhang, Z.J.: Optimizing resource consumption, operation complexity and efficiency in quantum-state sharing. J. Phys. B: At. Mol. Opt. Phys. 41, 145506 (2008)

    Article  ADS  Google Scholar 

  23. Choudhury, B.S., Samanta, S.: Perfect joint remote state preparation of arbitrary six-qubit cluster-type states. Quantum Inf. Process. 17, 175 (2018)

    Article  ADS  MathSciNet  Google Scholar 

  24. Wang, J., Zhang, Q., Tang, C.: Multiparty controlled quantum secure direct communication using GHZ state. Opt. Commun. 266, 732–737 (2003)

    Article  ADS  Google Scholar 

  25. Agrawal, P., Pati, A.: Perfect teleportation and superdense coding with W states. Phys. Rev. A 74(6), 062320 (2006)

    Article  ADS  Google Scholar 

  26. Yeo, Y., Chua, W.K.: Teleportation and dense coding with genuine multipartite entanglement. Phys. Rev. Lett. 96, 060502 (2006)

    Article  ADS  Google Scholar 

  27. Muralidharan, S., Panigrahi, P.K.: Quantum-information splitting using multipartite cluster states. Phys. Rev. A 78, 062333 (2008)

    Article  ADS  Google Scholar 

  28. Zhang, Q.N., Li, C.C., Li, Y.H., Nie, Y.Y.: Quantum secure direct communication based on four-qubit cluster states. Int. J. Theor. Phys. 52(1), 22–27 (2013)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

This work is supported by the University Grants Commission of India. We gratefully acknowledge the suggestions of the referees.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Soumen Samanta.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Choudhury, B.S., Samanta, S. An optional remote state preparation protocol for a four-qubit entangled state. Quantum Inf Process 18, 118 (2019). https://doi.org/10.1007/s11128-019-2231-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11128-019-2231-8

Keywords