Abstract
We propose a new protocol of asymmetric bidirectional controlled teleportation by using a seven-qubit cluster state as the quantum channel. That is to say Alice wants to transmit an arbitrary single-qubit state to Bob and Bob wants to transmit an arbitrary two qubit state to Alice via the control of the supervisor Charlie. One only need perform the Bell-state measurements and single-qubit measurement.

Similar content being viewed by others
Explore related subjects
Discover the latest articles, news and stories from top researchers in related subjects.References
Shor, P.W.: Algorithms for quantum computation: Discrete logarithms and factoring[C]. Foundations of Computer Science, 1994 Proceedings., 35th Annual Symposium on IEEE, 124–134 (1994)
Grover, L.K.: Quantum mechanics helps in searching for a needle in a haystack [J]. Phys. Rev. Lett. 79(2), 325 (1997)
Long, G.L.: Grover algorithm with zero theoretical failure rate[J]. Phys. Rev. A 64(2), 022307 (2001)
Toyama, F.M., van Dijk, W., Nogami, Y.: Quantum search with certainty based on modified Grover algorithms: optimum choice of parameters[J]. Quantum Inf. Process 12(5), 1897–1914 (2013)
Castagnoli, G.: arXiv preprint, arXiv:1308.5077 (2013)
Bennett, C.H., Brassard, B.: Quantum cryptography: public key distribution and coin toss- ing. In: proceedings of IEEE international conference on computers, systems and signal Pro- cessing, Bangalore, India (IEEE New York), pp. 175–179 (1984)
Ekert, A.K.: Quantum cryptography based on Bells theorem[J]. Phys. Rev. Lett. 67(6), 661 (1991)
Bennett, C.H., Brassard, G., Mermin, N.D.: Quantum cryptography without Bells theorem[J]. Phys. Rev. Lett. 68(5), 557 (1992)
Deng, F.G., Long, G.L.: Controlled order rearrangement encryption for quantum key distribution[J]. Phys. Rev. A 68(4), 042315 (2003)
Hwang, W.Y.: Quantum key distribution with high loss: toward global secure communication[J]. Phys. Rev. Lett. 91(5), 057901 (2003)
Deng, F.G., Long, G.L.: Bidirectional quantum key distribution protocol with practical faint laser pulses[J]. Phys. Rev. A 70(1), 012311 (2004)
Wang, X.B.: Beating the photon-number-splitting attack in practical quantum cryptography[J]. Phys. Rev. Lett. 94(23), 230503 (2005)
Lo, H.K., Ma. X., Chen, K.: Decoy state quantum key distribution[J]. Phys. Rev. Lett. 94(23), 230504 (2005)
Li, X.H., Deng, F.G., Zhou, H.Y.: Efficient quantum key distribution over a collective noise channel[J]. Phys. Rev. A 78(2), 022321 (2008)
Lo, H.K., Curty, M., Qi, B.: Measurement-device-independent quantum key distribution[J]. Phys. Rev. Lett. 108(13), 130503 (2012)
Hillery, M., Buzek, V., Berthiaume, A.: Phys. Rev. A 59, 1829 (1990)
Karlsson, A., Koashi, M., Imoto, N.: Phys. Rev. A 59, 162 (1999)
Cleve, R., Gottesman, D., Lo, H.K.: Phys. Rev. Lett 83, 648 (1999)
Xiao, L., Long, G.L., Deng, F.G., et al.: Efficient multiparty quantum-secret-sharing schemes[J]. Phys. Rev. A 69(5), 052307 (2004)
Lance, A.M., Symul, T., Bowen, W.P., et al.: Tripartite quantum state sharing[J]. Phys. Rev. Lett 92(17), 177903 (2004)
Deng, F.G., Zhou, H.Y., Long, G.L.: Circular quantum secret sharing[J]. J. Phys. A Math. Gen. 39(45), 14089 (2006)
Long, G.L., Liu, X.S.: Theoretically efficient high-capacity quantum-key-distribution scheme[J]. Phys. Rev. A, 65(3), 032302 (2002)
Deng, F.G., Long, G.L., Liu, X.S.: Two-step quantum direct communication protocol using the Einstein-Podolsky-Rosen pair block[J]. Phys. Rev. A 68(4), 042317 (2003)
Deng, F.G., Long, G.L.: Secure direct communication with a quantum one-time pad[J]. Phys. Rev. A 69(5), 052319 (2004)
Wang, C., Deng, F.G., Li, Y.S., et al.: Quantum secure direct communication with high-dimension quantum superdense coding[J]. Phys. Rev. A 71(4), 044305 (2005)
Wang, T.J., Li, T., Du, F.F., Deng, F.G.: Phys. Lett. 28, 040305 (2011)
Gu, B., Zhang, C.Y., Cheng, G.S., et al.: Robust quantum secure direct communication with a quantum one-time pad over a collective-noise channel[J]. Sci. China Phys. Mech. Astron. 54(5), 942–947 (2011)
Bin, G., Yu-Gai, H., Xia, F., et al.: A two-step quantum secure direct communication protocol with hyperentanglement[J]. Chin. Phys. B 20(10), 100309 (2011)
Gu, B., Huang, Y., Fang, X., et al.: Robust quantum secure communication with spatial quantum states of single photons[J]. Int. J. Theor. Phys. 52(12), 4461–4469 (2013)
Zhang, Q., Li, C., Li, Y., et al.: Quantum secure direct communication based on four-qubit cluster states[J]. Int. J. Theor. Phys. 52(1), 22–27 (2013)
Chang, Y., Xu, C.X., Zhang, S.B., et al.: Quantum secure direct communication and authentication protocol with single photons[J]. Chin. Sci. Bull. 58 (36), 4571–4576 (2013)
Zou, X.F., Qiu, D.W.: Three-step semiquantum secure direct communication protocol[J]. Sci. China Phys. Mech. Astron. 57(9), 1696–1702 (2014)
Zheng, C., Long, G.F.: Quantum secure direct dialogue using Einstein-Podolsky-Rosen pairs[J]. Sci. China Phys. Mech. Astron. 57(7), 1238–1243 (2014)
Su, X.: Applying Gaussian quantum discord to quantum key distribution[J]. Chin. Sci. Bull. 59(11), 1083–1090 (2014)
Zhang, C.M., Song, X.T., Treeviriyanupab, P., et al.: Delayed error verification in quantum key distribution[J]. Chin. Sci. Bull. 59(23), 2825–2828 (2014)
Zhang, C.X., et al.: Sci China-Phys mecha and Astro 57, 2043–2048 (2014)
Xu, J.S., Li, C.F.: Quantum integrated circuit: classical characterization[J]. Sci. Bull. 60(1), 141–141 (2015)
Xiaom, L., Long, G.L., Deng, F.G., et al.: Efficient multiparty quantum-secret-sharing schemes[J]. Phys. Rev. A 69(5), 052307 (2004)
Xiao, L., Long, G.L., Deng, F.G., et al.: Efficient multiparty quantum-secret-sharing schemes[J]. Phys. Rev. A 69(5), 052307 (2004)
Wang, C., Deng, F.G., Li, Y.S., et al.: Quantum secure direct communication with high-dimension quantum superdense coding[J]. Phys. Rev. A 71(4), 044305 (2005)
Deng, F.G., Li, X.H., Zhou, H.Y., et al.: Improving the security of multiparty quantum secret sharing against Trojan horse attack[J]. Phys. Rev. A 72(4), 044302 (2005)
Wang, C., Deng, F.G., Long, G.L.: Multi-step quantum secure direct communication using multi-particle greenCHorneCZeilinger state[J]. Opt. Commun. 253(1), 15–20 (2005)
Zhang, Z.J., Man, Z.X.: Many-agent controlled teleportation of multi-qubit quantum information[J]. Phys. Lett. A 341(1), 55–59 (2005)
Li, C.Y., Li, X.H., Deng, F.G., et al.: Complete multiple round quantum dense coding with quantum logical network[J]. Chin. Sci. Bull. 52(9), 1162–1165 (2007)
Li, X., Deng, F.: Controlled teleportation[J]. Frontiers of Computer Science in China 2(2), 147–160 (2008)
Zuo, X.Q., Liu, Y.M., Zhang, W., et al.: Simpler criterion on W state for perfect quantum state splitting and quantum teleportation[J]. Sci. China Ser. G Phys. Mech. Astron. 52(12), 1906–1912 (2009)
Yin, X.F., Liu, Y.M., Zhang, Z.Y., et al.: Perfect teleportation of an arbitrary three-qubit state with the highly entangled six-qubit genuine state[J]. Sci. China Ser. G Phys. Mech. Astron. 53(11), 2059–2063 (2010)
Bennett, C.H., Brassard, G., Crepeau, C., Jozsa, R., Peres, A., Wooters, W.K.: Phys. Rev. Lerr. 70, 1895 (1993)
Zeng, B., Zhang, P.: Remote-state preparation in higher dimension and the parallelizable manifold Sn-1[J]. Phys. Rev. A 65(2), 022316 (2002)
Peng, X., Zhu, X., Fang, X., et al.: Experimental implementation of remote state preparation by nuclear magnetic resonance[J]. Phys. Lett. A 306(5), 271–276 (2003)
Yan, F., Wang, D.: Probabilistic and controlled teleportation of unknown quantum states[J]. Phys. Lett. A 316(5), 297–303 (2003)
Yang, C.P., Chu, S.I., Han, S.: Efficient many-party controlled teleportation of multiqubit quantum information via entanglement[J]. Phys. Rev. A 70(2), 022329 (2004)
Xiang, G.Y., Li, J., Yu, B., et al.: Remote preparation of mixed states via noisy entanglement[J]. Phys. Rev. A 72(1), 012315 (2005)
Gao, T., Yan, F.L.: Nuovo cimento B 119 (2004) 313; T. Gao, FL Yan, and ZX Wang[J]. Chin. Phys. 14, 893 (2005)
Dengm F.G., Li, C.Y., Li, Y.S., et al.: Symmetric multiparty-controlled teleportation of an arbitrary two-particle entanglement[J]. Phys. Rev. A 72(2), 022338 (2005)
Rigolin, G.: Quantum teleportation of an arbitrary two-qubit state and its relation to multipartite entanglement[J]. Phys. Rev. A 71(3), 032303 (2005)
Yuan, H.C., Qi, K.G.: vol. 14 (2005)
Zhang, Z.J., Man, Z.X.: Phys. Lett. A 242, 55 (2005)
Deng, F.G., Li, X.H., Li, C.Y., et al.: Multiparty quantum-state sharing of an arbitrary two-particle state with Einstein-Podolsky-Rosen pairs[J]. Phys. Rev. A 72(4), 044301 (2005)
Zhang, Z.: Controlled teleportation of an arbitrary n-qubit quantum information using quantum secret sharing of classical message[J]. Phys. Lett. A 352(1), 55–58 (2006)
Yan, F.L., Ding, H.W.: Chin. Phys. Lett. 23, 17 (2006)
Yeo, Y., Chua, W.K.: Teleportation and dense coding with genuine multipartite entanglement[J]. Phys. Rev. Lett. 96(6), 060502 (2006)
Deng, F.G., Li, X.H., Li, C.Y., et al.: Quantum state sharing of an arbitrary two-qubit state with two-photon entanglements and Bell-state measurements[J]. Eur. Phys. J. D Optical and Plasma Physics 39(3), 459–464 (2006)
Dong, L., Xiu, X.M., Gao, Y.J.: Int. J. Mod. Phys. C 18, 1699 (2007)
Cao, H.J., Song, H.S.: Teleportation of a single qubit state via Unique W State[J]. Int. J. Theor. Phys. 46(6), 1636–1642 (2007)
Zhou, P., Li, X.H., Deng, F.G., et al.: Multiparty-controlled teleportation of an arbitrary m-qudit state with a pure entangled quantum channel[J]. J. Phys. A Math. Theor. 40(43), 13121 (2007)
Jiang, W.X., Fang, J.X., Zhu, S.J., Sha, J.Q.: Chin. Phys. Lett. 24, 1144–1146 (2007)
Da-Chuang, L., Zhuo-Liang, C.: Teleportation of two-particle entangled state via cluster state[J]. Commun. Theor. Phys. 47(3), 464 (2007)
Zhan, X.G., Li, H.M., Ji, H., Zeng, H.S.: Chin. Phys. B 16, 2880–2884 (2007)
Wang, Z.Y., Yuan, H., Shi, S.H., Zhang, Z.J.: Eur. Phys. J. D 41, 371–375 (2007)
Gao, T., Yan, F.L., Li, Y.C.: Optimal controlled teleportation[J]. EPL (Europhysics Letters) 84(5), 50001 (2008)
Wang, X.W., Yang, G.J.: Schemes for preparing atomic qubit cluster states in cavity QED[j]. Optic Communication 281(20), 5282–5285 (2008)
Zha, X.W., Ren, K.F.: General relation between the transformation operator and an invariant under stochastic local operations and classical communication in quantum teleportation[J]. Phys. Rev. A 77(1) (2008)
Li, X., Deng, F.: Controlled teleportation[J]. Frontiers of Computer Science in China 2(2), 147–160 (2008)
Hao, Y., Yi-Min, L., Lian-Fang, H., et al.: Tripartite arbitrary two-qutrit quantum state sharing[J]. Commun. Theor. Phys. 49(5), 1191 (2008)
Dong, J., Teng, J.F.: Controlled teleportation of an arbitrary n-qudit state using nonmaximally entangled GHZ states[J]. Eur. Phys. J. D 49(1), 129–134 (2008)
Tao, Y.J., Tian, D.P., Hu, M.L., Qin, M.: Chin. Phys. B 17, 624–627 (2008)
Xia, Y., Song, J., Song, H.S.: Quantum state sharing using linear optical elements[J]. Opt. Commun. 281(19), 4946–4950 (2008)
Wang, T.J., Zhou, H.Y., Deng, F.G.: Quantum state sharing of an arbitrary m-qudit state with two-qudit entanglements and generalized Bell-state measurements[J]. Physica A: Statistical Mechanics and its Applications 387(18), 4716–4722 (2008)
Sheng, Y.B., Deng, F.G., Zhou, H.Y.: Efficient and economic five-party quantum state sharing of an arbitrary m-qubit state[J]. Eur. Phys. J. D 48(2), 279–284 (2008)
Romano, R., van Loock, P.: Teleportation is necessary for faithful quantum state transfer through noisy channels of maximal rank[J]. Phys. Rev. A 82(1), 012334 (2010)
Zha, X.W., Song, H.Y.: Commun. Theor. Phys. 53, 852 (2010)
Chen, X.B., Xu, G., Yang, Y.X., et al.: Centrally controlled quantum teleportation[J]. Opt. Commun. 283(23), 4802–4809 (2010)
Chen, Q.Q., Xia, Y., Song, J., et al.: Joint remote state preparation of a W-type state via W-type states[J]. Phys. Lett. A 374(44), 4483–4487 (2010)
Hou, K., Liu, G.H., Zhang, X.Y., et al.: An efficient scheme for five-party quantum state sharing of an arbitrary m-qubit state using multiqubit cluster states[J]. Quantum Inf. Process. 10(4), 463–473 (2011)
Nie, Y., Li, Y., Liu, J., et al.: Quantum state sharing of an arbitrary three-qubit state by using four sets of W-class states[J]. Opt. Commun. 284(5), 1457–1460 (2011)
Shi, R.H., Huang, L.S., Yang, W., et al.: Asymmetric multi-party quantum state sharing of an arbitrary m-qubit state[J]. Quantum Inf. Process 10(1), 53–61 (2011)
Yang, K.Y., Xia, Y.: Joint remote preparation of a general three-qubit state via non-maximally GHZ states[J]. Int. J. Theor. Phys. 51(5), 1647–1654 (2012)
Li, Y., Nie, L.: Bidirectional controlled teleportation by using a five-qubit composite GHZ-bell state[J]. Int. J. Theor. Phys. 52(5), 1630–1634 (2013)
Luo, M.X., Deng, Y.: Quantum splitting an arbitrary three-qubit state with -state[J]. Quantum Inf. Process 12(2), 773–784 (2013)
Qi, J.X., Zha, X.W., Sun, X.M.: Testing the nonlocality of entangled states by a new Bell-like inequality[J]. Sci. China Phys. Mech. Astron. 56(11), 2236–2238 (2013)
Chen, Y.: Bidirectional quantum controlled teleportation by using a genuine six-qubit entangled state[J]. Int. J. Theor. Phys. 54(1), 269–272 (2015)
Sheng, Y.B., Deng, F.G., Long, G.L.: Complete hyperentangled-Bell-state analysis for quantum communication[J]. Phys. Rev. A 82(3), 032318 (2010)
Wang, X.L., Cai, X.D., Su, Z.E., et al.: Quantum teleportation of multiple degrees of freedom of a single photon[J]. Nature 518(7540), 516–519 (2015)
Zha, X.W., Zou, Z.C., Qi, J.X., et al.: Bidirectional quantum controlled teleportation via five-qubit cluster state[J]. Int. J. Theor. Phys. 52(6), 1740–1744 (2013)
Duan, Y.J., Zha, X.W., Sun, X.M., et al.: Bidirectional quantum controlled teleportation via a maximally seven-qubit entangled state[J]. Int. J. Theor. Phys. 53 (8), 2697–2707 (2014)
Li, Y., Nie, L.: Bidirectional controlled teleportation by using a five-qubit composite GHZ-bell state[J]. Int. J. Theor. Phys. 52(5), 1630–1634 (2013)
Li, Y., Li, X., Sang, M., et al.: Bidirectional controlled quantum teleportation and secure direct communication using five-qubit entangled state[J]. Quantum Inf. Process. 12(12), 3835–3844 (2013)
Shukla, C., Banerjee, A., Pathak, A.: Bidirectional controlled teleportation by using 5-qubit states: a generalized view[J]. Int. J. Theor. Phys. 52(10), 3790–3796 (2013)
Sun, X.M., Zha, X.W.: A scheme of bidirectional quantum controlled teleportation via six-qubit maximally entangled state[J]. Acta Photonica Sin 48, 1052–1056 (2013)
Yan, A.: Bidirectional controlled teleportation via six-qubit cluster state[J]. Int. J. Theor. Phys. 52(11), 3870–3873 (2013)
Zhang, D., Zha, X.W., Duan, Y.J.: Bidirectional and asymmetric quantum controlled teleportation[J]. Int. J. Theor. Phys. 54(5), 1711–1719 (2015)
Hou, S.Y., Sheng, Y.B., Feng, G.R., et al.: Experimental optimal single qubit purification in an NMR quantum information processor[J]. Sci. Rep., 4 (2014)
Zhao, S.Y., Liu, J., Zhou, L., et al.: Two-step entanglement concentration for arbitrary electronic cluster state[J]. Quantum Inf. Process. 12(12), 3633–3647 (2013)
Bin, S., Shi-Lei, S., Li-Li, S., et al.: Efficient three-step entanglement concentration for an arbitrary four-photon cluster state[J]. Chin. Phys. B 22(3), 030305 (2013)
Lan, Z.: Consequent entanglement concentration of a less-entangled electronic cluster state with controlled-not gates[J]. Chin. Phys. B 23(5), 050308 (2014)
Cao, C., Wang, T.J., Zhang, R., et al.: Cluster state entanglement generation and concentration on nitrogen-vacancy centers in decoherence-free subspace[J]. Laser Phys. Lett. 12(3), 036001 (2015)
Osorio, C.I., Bruno, N., Sangouard, N., et al.: Heralded photon amplification for quantum communication[J]. Phys. Rev. A 86(2), 023815 (2012)
Zhou, L., Sheng, Y.B.: Recyclable amplification protocol for the single-photon entangled state[J]. Laser Phys. Lett. 12(4), 045203 (2015)
Sang, M.H.: Int. J. Theor. Phys. doi:10.1007/s10773-015-2670-7
Zhang, D., Zha, X.W., Li, W., et al.: Bidirectional and asymmetric quantum controlled teleportation via maximally eight-qubit entangled state[J]. Quantum Inf. Process. 14(10), 3835–3844 (2015)
Acknowledgments
This work is supported by Shaanxi Natural Science Foundation under Contract No.2013JM1009 and the Shaanxi Natural Science Foundation under Contract No.2015JM6263.
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Yang, YQ., Zha, XW. & Yu, Y. Asymmetric Bidirectional Controlled Teleportation via Seven-qubit Cluster State. Int J Theor Phys 55, 4197–4204 (2016). https://doi.org/10.1007/s10773-016-3044-5
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s10773-016-3044-5