[go: up one dir, main page]

Skip to main content

Advertisement

Log in

Efficient and Economic Schemes for Remotely Preparing a Four-Qubit Cluster-Type Entangled State

  • Published:
International Journal of Theoretical Physics Aims and scope Submit manuscript

Abstract

We propose two novel schemes for remotely preparing a four-qubit cluster-type entangled state (FCES) with complex coefficients by using four EPR pairs and two three-qubit GHZ states as the quantum channel, respectively. To complete the remote state preparation (RSP) schemes, several novel sets of four-and two-qubit measuring basis were introduced. In these schemes, after the sender performs two different projective measurements, the receiver should introduce two auxiliary qubits and employ suitable C-NOT gates on his qubits, the original state can be reconstructed with unit successful probability. Compared with the previous schemes for the RSP of a FCES, the advantage of the present schemes is that the entanglement resource can be reduced.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

References

  1. Karlsson, A., Bourennane, M.: Quantum teleportation using three-particle entanglement. Phys. Rev. A 58, 4394 (1998)

    Article  ADS  MathSciNet  Google Scholar 

  2. Murao, M., Jonathan, D., Plenio, M.B.: Quantum telecloning and multiparticle entanglement. Phys. Rev. A 59, 156 (1999)

    Article  ADS  Google Scholar 

  3. Sackett, C.A., Kielpinski, D., King, B.E., Langer, C., Meyer, V., Myatt, C.J., Rowe, M., Turchett, Q.A., Itano, W.M., Wineland, C.M.D.J.: Experimental entanglement of four particles. Nature (London) 404, 256 (2000)

    Article  ADS  Google Scholar 

  4. Pan, J.W., Daniell, M., Gasparoni, S., Weihs, G., Zeilinger, A.: Experimental demonstration of four-photon entanglement and high-fidelity teleportation. Phys. Rev. Lett. 86, 4435 (2001)

    Article  ADS  Google Scholar 

  5. Zhao, Z., Yang, T., Chen, Y.Z., Zhang, A.N., Zukowski, M., Pan, J.W.: Experimental Violation of Local Realism by Four-Photon Greenberger-Horne-Zeilinger Entanglement. Phys. Rev. Lett. 91, 180401 (2003)

    Article  ADS  Google Scholar 

  6. Li, Y.M., Kobayashi, T.: Four-photon W state using two-crystal geometry parametric down-conversion. Phys. Rev. A 70, 014301 (2004)

    Article  ADS  Google Scholar 

  7. Mikami, H., Li, Y.M., Kobayashi, T.: Generation of the four-photon W state and other multiphoton entangled states using parametric down-conversion. Phys. Rev. A 70, 052308 (2004)

    Article  ADS  Google Scholar 

  8. Deng, Z.J., Feng, M., Gao, K.L.: Preparation of entangled states of four remote atomic qubits in decoherence-free subspace. Phys. Rev. A 75, 024302 (2007)

    Article  ADS  Google Scholar 

  9. Peng, Z.H., Zou, J., Liu, X.J.: Scheme for implementing efficient quantum information processing with multiqubit W-class states in cavity QED. J. Phys. B: At. Mol. Opt. Phys. 41, 065505 (2008)

    Article  Google Scholar 

  10. Verstraete, F., Dehaene, J., DeMoor, B., Verschelde, H.: Four qubits can be entangled in nine different ways. Phys. Rev. A 65, 052112 (2002)

    Article  ADS  MathSciNet  Google Scholar 

  11. Briegel, H.J., Raussendorf, R.: Persistent entanglement in arrays of interacting particles. Phys. Rev. Lett. 86, 910 (2001)

    Article  ADS  Google Scholar 

  12. Dür, W., Briegel, H.J.: Stability of macroscopic entanglement under decoherence. Phys. Rev. Lett. 92, 180403 (2004)

    Article  Google Scholar 

  13. Raussendorf, R., Briegel, H.J.: A one-way quantum computer. Phys. Rev. Lett. 86, 5188 (2001)

    Article  ADS  Google Scholar 

  14. Walther, P., Resch, K.J., Rudolph, T., Schenck, E., Weinfurter, H., Vedral, V., Aspelmeyer, M., Zeilinger, A.: Experimental one-way quantum computing. Nature 434, 169 (2005)

    Article  ADS  Google Scholar 

  15. Schlingemann, D., Werner, R.F.: Quantum error-correcting codes associated with graphs. Phys. Rev. A 65, 012308 (2001)

    Article  ADS  Google Scholar 

  16. Wang, X.W., Shan, Y.G., Xia, L.X., Lu, M.W.: Dense coding and teleportation with one-dimensional cluster states. Phys. Lett. A 364, 7 (2007)

    Article  ADS  MATH  Google Scholar 

  17. Li, D.C., Cao, Z.L.: Teleportation of two-particle entangled state via cluster state. Commun. Theor. Phys. 47, 464 (2007)

    Article  ADS  Google Scholar 

  18. Muralidharan, S., Panigrahi, P.K.: Quantum-information splitting using multipartite cluster states. Phys. Rev. A 78, 062333 (2008)

    Article  ADS  Google Scholar 

  19. Lo, H.K.: Classical-communication cost in distributed quantum-information processing: A generalization of quantum-communication complexity. Phys. Rev. A 62, 012313 (2000)

    Article  ADS  Google Scholar 

  20. Pati, A.K.: Minimum classical bit for remote preparation and measurement of a qubit. Phys. Rev. A 63, 014302 (2000)

    Article  ADS  Google Scholar 

  21. Bennett, C.H., DiVincenzo, D.P., Shor, P.W., Smolin, J.A., Terhal, B.M., Wootters, W.K.: Remote State Preparation. Phys. Rev. Lett. 87, 077902 (2001)

    Article  ADS  Google Scholar 

  22. Bennett, C.H., Brassard, G., Crépeau, C., Jozsa, R., Peres, A., Wootters, W.K.: Teleporting an unknown quantum state via dual classical and Einstein-Podolsky-Rosen channels. Phys. Rev. Lett. 70, 1895 (1993)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  23. Devetak, I., Berger, T.: Statistical distinguishability between unitary operations. Phys. Rev. Lett. 87, 177901 (2001)

    Article  ADS  Google Scholar 

  24. Zeng, B., Zhang, P.: Remote-state preparation in higher dimension and the parallelizablemanifold Sn-1. Phys. Rev. A 65, 022316 (2002)

    Article  ADS  Google Scholar 

  25. Audenaert, K., Plenio, M.B., Eisert, J.: Entanglement cost under positive-partial-transpose-preserving operations. Phys. Rev. Lett. 90, 027901 (2003)

    Google Scholar 

  26. Abeysinghe, A., Hayden, P.: Generalized remote state preparation: Trading cbits, qubits, and ebits in quantum communication. Phys. Rev. A 68, 062319 (2003)

    Article  ADS  Google Scholar 

  27. Leung, D.W., Shor, P.W.: Oblivious remote state preparation. Phys. Rev. Lett. 90, 127905 (2003)

    Article  ADS  Google Scholar 

  28. Ye, M.Y., Zhang, Y.S., Guo, G.C.: Faithful remote state preparation using finite classical bits and a nonmaximally entangled state. Phys. Rev. A 69, 022310 (2004)

    Article  ADS  Google Scholar 

  29. Kurucz, Z., Adam, P., Kis, Z., Janszky, J.: Continuous variable remote state preparation. Phys. Rev. A 72, 052315 (2005)

    Article  ADS  Google Scholar 

  30. Zhan, Y.B.: Remote state preparation of a Greenberger-Horne-Zeilinger class state. Commun. Theor. Phys. 43, 637 (2005)

    Article  ADS  Google Scholar 

  31. Zhan, Y.B., Wang, Y.W.: Probabilistic remote preparation of a three-particle entangled state via two different non-maximally entangled channels. Commun. Theor. Phys. 48, 449 (2007)

    Article  ADS  Google Scholar 

  32. Ma, P.C., Zhan, Y.B.: Scheme for probabilistic remotely preparing a multi-particle entangled GHZ state. Chin. Phys. B 17, 445 (2008)

    Article  ADS  Google Scholar 

  33. Liu, J.M., Feng, X.L., Oh, C.H.: Remote preparation of arbitrary two- and three-qubit states. Europhys. Lett. 87, 30006 (2009)

    Article  ADS  Google Scholar 

  34. Shi, J., Zhan, Y.B.: Probabilistic remote preparation of a tripartite high-dimensional equatorial entangled state. Commun. Thoer. Phys. 51, 239 (2009)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  35. Zhan, Y.B., Zhang, Q.Y., Shi, J., Ma, P.C., Hu, B.L.: An efficient and economic scheme for remotely preparing a multi-qudit state via a single entangled qudit pair. Commun. Thoer. Phys. 54, 463 (2010)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  36. Zhan, Y.B.: Remotely preparing a four-dimensional quantum state via positive operator-valued measure. Int. J. Theor. Phys. 51, 3001 (2012)

    Article  MATH  Google Scholar 

  37. Zhan, Y.B.: Deterministic remote preparation of arbitrary two- and three-qubit states. Europhys. Lett. 98, 40005 (2012)

    Article  ADS  Google Scholar 

  38. Peng, X.H., Zhu, X.W., Fang, X.M., Feng, M., Liu, M.L., Gao, K.L.: Experimental implementation of remote state preparation by nuclear magnetic resonance. Phys. Lett. A 306, 271 (2003)

    Article  ADS  Google Scholar 

  39. Babichev, S.A., Brezger, B., Lvovsky, A.I.: Remote preparation of a single-mode photonic qubit by measuring field quadrature noise. Phys. Rev. Lett. 92, 047903 (2004)

    Article  ADS  Google Scholar 

  40. Xiang, G.Y., Li, J., Yu, B., Guo, G.C.: Remote preparation of mixed states via noisy entanglement. Phys. Rev. A 72, 012315 (2005)

    Article  ADS  Google Scholar 

  41. Peters, N.A., Barreiro, J.T., Goggin, M.E., Wei, T.C., Kwiat, P.G.: Remote state preparation: arbitrary remote control of photon polarization. Phys. Rev. Lett. 94, 150502 (2005)

    Article  ADS  Google Scholar 

  42. Rosenfeld, W., Berner, S., Volz, J., Weber, M., Weinfurter, H.: Remote preparation of an atomic quantum memory. Phys. Rev. Lett. 98, 050504 (2007)

    Article  ADS  Google Scholar 

  43. Ma, P.C., Zhan, Y.B.: Scheme for remotely preparing a four-particle entangled cluster-type state. Opt. Commun. 283, 2640 (2010)

    Article  ADS  Google Scholar 

  44. Ma, S.Y., Chen, X.B., Luo, M.X., Zhang, R., Yang, Y.X.: Remote preparation of a four-particle entangled cluster-type state. Opt. Commun. 284, 4088 (2011)

    Article  ADS  Google Scholar 

  45. Wang, D., Ye, L.: Optimizing scheme for remote preparation of four-particle cluster-like entangled states. Int. J. Theor. Phys. 50, 2748 (2011)

    Article  MATH  Google Scholar 

  46. Zhan, Y.B., Fu, H., Li, X.W., Ma, P.C.: Deterministic remote preparation of a four-qubit cluster-type entangled state. Int. J. Theor. Phys. 52, 2615 (2013)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Acknowledgments

This work is supported by the National Natural Science Foundation of China under Grants No.11074088.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shu-Yu Zhao.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhao, SY., Fu, H., Li, XW. et al. Efficient and Economic Schemes for Remotely Preparing a Four-Qubit Cluster-Type Entangled State. Int J Theor Phys 53, 2485–2491 (2014). https://doi.org/10.1007/s10773-014-2047-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10773-014-2047-3

Keywords