Evaluation of the Impacts of Climate Change on Sediment Yield from the Logiya Watershed, Lower Awash Basin, Ethiopia
<p>Location of the Logiya watershed, meteorological and flow gauging stations.</p> "> Figure 2
<p>Mean monthly precipitation and temperature (Tmax and Tmin) selected stations in the study area (1988–2016).</p> "> Figure 3
<p>Soil types (<b>a</b>) and Land Use/Land Cover (LULC) classes (<b>b</b>) in Logiya watershed.</p> "> Figure 4
<p>Sediment rating curve of the Logiya River at the Logiya gauge station.</p> "> Figure 5
<p>Historical trends of the annual precipitation (<b>a</b>), temperature maximum (Tmax) (<b>b</b>), temperature minimum (Tmin) (<b>c</b>), and sediment yield (<b>d</b>) from 1971–2000 in the Logiya watershed.</p> "> Figure 5 Cont.
<p>Historical trends of the annual precipitation (<b>a</b>), temperature maximum (Tmax) (<b>b</b>), temperature minimum (Tmin) (<b>c</b>), and sediment yield (<b>d</b>) from 1971–2000 in the Logiya watershed.</p> "> Figure 6
<p>Observed and downscaled average monthly maximum temperature (<b>a</b>), minimum temperature (<b>b</b>), and precipitation (<b>c</b>) of observed vs. bias-corrected and un-corrected RCP time series (1988–2016) of the Logiya watershed.</p> "> Figure 7
<p>Soil and Water Assessment Tool (SWAT) model calibration (<b>a</b>) and validation (<b>b</b>) for streamflow at the monthly time scale during 1992–1999 and 2000–2005, respectively.</p> "> Figure 8
<p>SWAT model calibration (<b>a</b>) and validation (<b>b</b>) for sediment yield at the monthly time scale during 1992–1999 and 2000–2005 respectively.</p> "> Figure 9
<p>Mean monthly observed and simulated sediment load (1992–2005).</p> "> Figure 10
<p>Spatial map of the observed sediment yield.</p> "> Figure 11
<p>Spatial map of the annual sediment yield (<b>a</b>) in 2030s RCP4.5 (<b>b</b>) in 2030s RCP8.5 (<b>c</b>) in 2060s RCP4.5 and (<b>d</b>) in 2060s RCP8.5 in the Logiya watershed.</p> "> Figure 12
<p>Projected change of mean monthly sediment yield (<b>a</b>) in the 2030s (<b>b</b>) in the 2060s from the baseline period in the Logiya watershed.</p> "> Figure 13
<p>Mean monthly sediment yield in the 2030s (<b>a</b>) and the 2060s (<b>b</b>) projected at the outlet of the Logiya watershed.</p> ">
Abstract
:1. Introduction
2. Materials and Methods
2.1. Description of the Study Area
2.2. Data Sources
2.2.1. Digital Elevation Model
2.2.2. Hydrological and Meteorological Data
2.2.3. Soil Data
2.2.4. Land Use/Land Cover
2.2.5. Climate Models and RCPs Scenarios
2.2.6. Accuracy of Precipitation Simulations from the Climate Model
2.2.7. Bias Correction Method
2.2.8. Statistical Test for Trend and Variability Analysis
2.3. Sediment Rating Curve Development
2.4. SWAT Model Setup
2.4.1. SWAT Model Description
2.4.2. Watershed Delineation
2.4.3. Hydrologic Response Units (HRU) Analysis
2.5. SWAT Calibration and Uncertainty Procedures
3. Results and Discussion
3.1. Statistical Trend Analysis of Historical Climate Variability
3.2. Evaluating Accuracy of Climate Model Simulations
3.3. Future Climate Projection
3.4. SWAT Model Calibration and Validation
3.4.1. Sensitivity Parameters of Streamflow Analysis
3.4.2. Streamflow Calibration and Validation
3.4.3. Sediment Yield Calibration and Validation
3.5. Spatial Variation of Sediment Yield under Different Climate Scenarios
3.6. Impact of Climate Change on Sediment Yield and Streamflow in Logiya Watershed
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Seneviratne, S.; Nicholls, N.; Easterling, D.; Goodess, C.; Kanae, S.; Kossin, J.; Marengo, J.; McInnes, K.; Rahimi, M.; Reichstein, M.; et al. Changes in Climate Extremes and Their Impacts on the Natural Physical Environment, Chapter A Special Report of Working Groups I and II of the Intergovernmental Panel on Climate Change (IPCC); Cambridge University Press: Cambridge, UK; New York, NY, USA, 2012; pp. 109–230. [Google Scholar]
- Eldiiar, D.; Xi, C.; Amobichukwu, C.; Amanambu, F.; Rustam, O.; Gulnura, I.; Gulkaiyr, O. Projected Rainfall Erosivity Over Central Asia Based on CMIP5 Climate Models. Water 2019, 11, 897. [Google Scholar] [CrossRef]
- Surya, G. Simulating Climate Change Impact on Soil Erosion and Soil Carbon Sequestration; Indian Space Research Organization: Bangalore, India, 2015.
- World Bank. Costing Adaptation through Local Institutions Village Survey Results: Ethiopia; World Bank: Washington, DC, USA, 2011. [Google Scholar]
- Di Falco, S.; Veronesi, M.; Yesuf, M. Does adaptation to climate change provide food security? A micro-perspective from Ethiopia. Am. J. Agric. Econ. 2011, 93, 829–846. [Google Scholar] [CrossRef]
- Wanders, N.; Wada, Y.; Van Lanen, H. Global hydrological droughts in the 21st century under. Earth Syst. Dyn. 2015, 6, 1–15. [Google Scholar] [CrossRef]
- Houghton, D. Introduction to Climate Change: Lecture Notes for Meteorologists; Secretariat of the World Meteorological Organization: Geneva, Switzerland, 2002. [Google Scholar]
- Setegn, S.; Rayner, D.; Melesse, A.; Dargahi, B.; Srinivasan, R. Impact of climate change on the hydro climatology of Lake Tana basin, Ethiopia. Water Resour. 2011, 47, 1–13. [Google Scholar]
- Intergovernmental Panel on Climate Change (IPCC). Climate Change: AR4 Synthesis Report; Cambridge University Press: Cambridge, UK, 2007. [Google Scholar]
- Intergovernmental Panel on Climate Change (IPCC). Climate Change: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change; Stoker, T., Qin, D., lattner, K., Tigner, M., Allen, K., Boschung, J., Nauels, A., Xia, Y., Bex, V., Midgley, P., Eds.; Cambridge University Press: Cambridge, UK; New York, NY, USA, 2013. [Google Scholar]
- Pumo, D.; Arnone, E.; Francipane, A.; Caracciolo, D.; Noto, L.V. Potential implications of climate change and urbanization on watershed hydrology. J. Hydrol. 2017, 554, 80–99. [Google Scholar] [CrossRef]
- Azim, F.; Shakir, A.; Rehman, H.; Kanwal, A. Impact of climate change on sediment yield for Naran watershed, Pakistan. Int. J. Sediment Res. 2016, 31, 212–219. [Google Scholar] [CrossRef]
- Shrestha, B.; Babel, M.; Maskey, S.; Van, A.; Uhlenbrook, S.; Green, A.; Akkharath, I. Impact of climate change on sediment yield in the Mekong River basin: A case study of the Nam Ou basin, Lao PDR. J. Hydrol. Earth Syst. Sci. 2013, 17, 1–20. [Google Scholar] [CrossRef]
- Omwoyo, M.A.; Muthama, A.N.J.; Opere, A.; Onwonga, R. Simulating Streamflow in Response to Climate Change in the Upper Ewaso Ngiro Catchment, Kenya. J. Clim. Chang. Sustain. 2017, 1, 12–29. [Google Scholar]
- Elena, S.; Chiara, B.; Alexandre, S.G.; John, J.H. Mitigating Climate Change in the Cultural Built Heritage Sector. Climate 2019, 7, 90. [Google Scholar] [CrossRef]
- Li, Z.; Fang, H. Impacts of climate change on water erosion: A review. Earth-Sci. Rev. 2016, 163, 94–117. [Google Scholar] [CrossRef]
- Pumo, D.; Caracciolo, D.; Viola, F.; Noto, L.V. Climate change effects on the hydrological regime of small non-perennial river basins. Sci. Total Environ. 2016, 542, 76–92. [Google Scholar] [CrossRef] [PubMed]
- Mohammad, R.; Ommolbanin, B.; Thomas, P.; Elham, R.S. Modeling the Impact of Climate Change and Land Use Change Scenarios on Soil Erosion at the Minab Dam Watershed. Sustainability 2019, 11, 3353. [Google Scholar] [CrossRef]
- Zhang, S.; Li, Z.; Lin, X.; Zhang, C. Assessment of Climate Change and Associated Vegetation Cover Change on Watershed-Scale Runoff and Sediment Yield. Water 2019, 11, 1373. [Google Scholar] [CrossRef]
- Nearing, M.; Pruski, F.; O’Neal, M. Expected climate change impacts on soil erosion rates: A review. J. Soil Water Conserv. 2004, 59, 43–50. [Google Scholar]
- Peizhen, Z.; Molnar, P.; Downs, W. Increased sedimentation rates and grain sizes 2-4 Myr ago due to the influence of climate change on erosion rates. Nature 2001, 410, 891–897. [Google Scholar] [CrossRef] [PubMed]
- Pruski, F.; Nearing, M. Climate-induced changes in erosion during the 21st century for eight US locations. J. Water Resour. 2002, 38, 1–34. [Google Scholar]
- Mullan, D.; Mortlock, D.; Fealy, R. Addressing key limitations associated with modelling soil erosion under the impacts of future climate change. J. Agric. For. Meteorol. 2012, 156, 18–30. [Google Scholar] [CrossRef] [Green Version]
- Woldemariam, G.W.; Iguala, A.D.; Tekalign, S.; Reddy, R.U. Spatial Modeling of Soil Erosion Risk and Its Implication for Conservation Planning: The Case of the Gobele Watershed, East Hararghe Zone, Ethiopia. Land 2018, 7, 25. [Google Scholar] [CrossRef]
- Francipane, A.; Fatichi, S.; Ivanov, V.Y.; Noto, L.V. Stochastic assessment of climate impacts on hydrology and geomorphology of semiarid headwater basins using a physically based model. J. Geophys. Res. Earth Surf. 2015, 120, 507–533. [Google Scholar] [CrossRef] [Green Version]
- Julien, P. Erosion and Sedimentation, 2nd ed.; Cambridge University Press: Cambridge, UK, 2010. [Google Scholar]
- Lili, W.; Keith, A.; Dennis, C. Impacts of Climate Change on Soil Erosion in the Great Lakes Region. Water 2018, 10, 715. [Google Scholar] [CrossRef]
- Azari, M.; Reza, H.; Saghafian, B.; Faramarzi, M. Climate change impacts on streamflow and sediment yield in the North of Iran. Hydrol. Sci. J. 2016, 61, 123–133. [Google Scholar] [CrossRef]
- Adem, A.; Tilahun, S.; Ayana, E.; Worqlul, A.; Assefa, T.; Dessu, S.; Melesse, A. Climate Change Impact on Sediment Yield in the Upper Gilgel Abay Catchment, Blue Nile Basin, Ethiopia. Landscape Dynamics, Soils and Hydrological Processes in Varied Climates. Springer Geogr. 2015. [Google Scholar] [CrossRef]
- Admassie, A.; Adenew, A. Stakeholders’ Perceptions of Climate Change and Adaptation Strategies in Ethiopia; EEA Research Report; Ethiopian Economic Association: Addis Ababa, Ethiopia, 2008; Available online: http://www.eeaecon.org/Research%20Materials.htm (accessed on 9 June 2017).
- Awass, A. Hydrological Drought Analysis-Occurrence, Severity, Risks: The Case of Wabi Shebelle River Basin, Ethiopia. Ph.D. Thesis, University at Siegen, Siegen, Germany, 2009. [Google Scholar]
- Hamza, I.; Iyela, A. Land use pattern, Climate change, and its implication for food security in Ethiopia. Ethiop. J. Environ. Stud. Manag. 2012, 5, 26–31. [Google Scholar] [CrossRef]
- Deressa, T.; Hassan, R.; Cringler, C. Climate change and agriculture paper perception of and adaptation to climate change by farmers in the Nile basin of Ethiopia. J. Agric. Sci. 2011, 149, 23–31. [Google Scholar] [CrossRef]
- Cheung, H.; Gabriel, B.; Ashbindu, S. Trends and spatial distribution of annual and seasonal rainfall in Ethiopia. Int. J. Climatol. 2008, 28, 1723–1734. [Google Scholar] [CrossRef]
- Zhang, X.; Nearing, M. Impact of climate change on soil erosion, runoff, and wheat productivity in central Oklahoma. Catena 2005, 61, 185–195. [Google Scholar] [CrossRef]
- African Climate Change Resilience Alliance (ACCRA). Climate Trends in Ethiopia: Summary of ACCRA Research in Three Sites. 2011. Available online: https://insights.careinternational.org.uk/media/k2/attachments/ACCRA_Policy_Brief_Ethiopia_Climate_Trends.pdf (accessed on 2 February 2018).
- Kefyalew, A. Integrated Flood Management Case Study: Ethiopia Integrated Flood Management; WMO/GWP Associated Programme on Flood Management; World Meteorological Organization: Geneva, Switzerland, 2003. [Google Scholar]
- Yidenkachew, A. Flood Frequency Analysis for Lower Awash Sub-Basin (Tributaries from northern Wollo High Lands) Using Swat 2005 Model. Master’s Thesis, Addis Ababa University, Addis Ababa, Ethiopia, 2008. [Google Scholar]
- Uqubai, B. Flood Forecasting and Early Warning System in Lower Awash Sub-Basin. Master’s Thesis, Arba Minch University, Arba Minch, Ethiopia, 2010. [Google Scholar]
- Getahun, Y.; Gebre, S. Flood Hazard Assessment and Mapping of Flood Inundation Area of the Awash River Basin in Ethiopia using GIS and HEC-GeoRAS/HEC-RAS Model. J. Civ. Environ. Eng. 2015, 5, 179. [Google Scholar]
- Simenew, K.; Dejen, T.; Tesfaye, S.; Fekadu, R.; Tesfu, K.; Fufa, D. Characterization of Camel Production System in Afar Pastoralists, North East Ethiopia. Asian J. Agric. Sci. 2013, 5, 16–24. [Google Scholar] [CrossRef]
- Simane, B.; Beyene, H.; Deressa, D.; Kumie, A.; Berhane, K.; Samet, J. Review of Climate Change and Health in Ethiopia: Status and Gap Analysis. Ethiop. J. Health Dev. 2016, 30, 28–41. [Google Scholar] [PubMed]
- Intergovernmental Panel on Climate Change (IPCC). The Scientific Basis. Contribution of Working Group I to the Third Assessment Report of the Intergovernmental Panel on Climate Change; Houghton, J.T., Ding, Y., Griggs, D.J., Noguer, M., van der Winden, P.J., Dai, K., Eds.; Cambridge University Press: Cambridge, UK; New York, NY, USA, 2001; p. 881. [Google Scholar]
- Lu, X. Sediment loads response to climate change: A preliminary study of eight large Chinese rivers. Int. J. Sediment Res. 2013, 28, 1–14. [Google Scholar] [CrossRef]
- Monte, R.; Nearing, A.; Roel, C.; Jane, S.; Rebecca, A. Climate change impacts on soil erosion in Midwest United States with changes in crop management. Catena 2005, 61, 165–184. [Google Scholar]
- Food and Agriculture Organization (FAO). The Digital Soil Map of the World, Land and Water Development Division; FAO: Rome, Italy, 1995; Available online: http://www.fao.org/geonetwork/ (accessed on 15 March 2016).
- National Meteorological Agency (NMA). Mean Monthly Rainfall Data; NMA: Addis Ababa, Ethiopia, 2017; Unpublished Document.
- McCuen, R. Hydrologic Analysis and Design, 2nd ed.; Pearson: London, UK, 1998. [Google Scholar]
- Raes, D.; Mallants, D.; Son, Z. RAINBOW: A software package for analyzing hydrologic data. Trans. Ecol. Environ. 1996, 12. [Google Scholar]
- Subramanya, K. Engineering Hydrology; McGraw-Hill: New York, NY, USA, 2008. [Google Scholar]
- Neitsch, S.; Arnold, J.; Kiniry, J.; Williams, J.; King, K. Soil and Water Assessment Tool; Theoretical Documentation, Version 2005; Texas A&M University System: College Station, TX, USA, 2005. [Google Scholar]
- Lydia, A.; Joseph, O.; Mohammed, Y.; Christopher, O. Projected Climatic and Hydrologic Changes to Lake Victoria Basin Rivers under Three RCP Emission Scenarios for 2015–2100 and Impacts on the Water Sector. Water 2019, 11, 1449. [Google Scholar] [CrossRef]
- Endris, H.S.; Lennard, C.; Hewitson, B.; Dosio, A.; Nikulin, G.; Panitz, H.J. Teleconnection responses in multi-GCM driven CORDEX RCMs over Eastern Africa. Clim. Dyn. 2016, 46, 2821–2846. [Google Scholar] [CrossRef]
- Haile, A.; Rietjes, T. Evaluation of regional climate model simulations of rainfall over the upper Blue Nile basin. Atmos. Res. 2015, 161, 57–64. [Google Scholar]
- Bakker, A.; Hurk, B. Bias Correction and Resampling of RACMO Output for the Hydrological Modelling of the Rhine; Technical Report TR-307; KNMI: De Bil, The Netherlands, 2011. [Google Scholar]
- Gadissa, T.; Nyadawa, M.; Behulu, F.; Mutua, B. The Effect of Climate Change on Loss of Lake Volume: Case of Sedimentation in Central Rift Valley Basin, Ethiopia. Hydrology 2018, 5, 67. [Google Scholar] [CrossRef]
- Wörner, V.; Kreye, P.; Meon, G. Effects of Bias-Correcting Climate Model Data on the Projection of Future Changes in High Flows. Hydrology 2019, 6, 46. [Google Scholar] [CrossRef]
- Graham, L.P.; Haggemann, S.; Jaun, S.; Beniston, M. On interpreting hydrological change from regional climate models. Clim. Chang. 2007, 81, 97–122. [Google Scholar] [CrossRef]
- Leander, R.; Buishand, T. Resampling of regional climate model output for the simulation of extreme river flows. J. Hydrol. 2007, 332, 487–496. [Google Scholar] [CrossRef]
- Teutschbein, C.; Seibert, J. Bias correction of regional climate model (RCM) simulations possible for non-stationary conditions? J. Hydrol. Earth Syst. Sci. 2013, 17, 5061–5077. [Google Scholar] [CrossRef]
- Chaemiso, A.; Abebe, A.; Pingale, S. Assessment of the impact of climate change on surface hydrological processes using SWAT: A case study of Omo-Gibe river basin, Ethiopia. Model. Earth Syst. Environ. 2016, 2, 205. [Google Scholar] [CrossRef]
- Terink, W.; Hurkmans, R.; Torfs, P.; Uijlenhoet, R. Evaluation of a bias correction method applied to downscaled precipitation and temperature reanalysis data for Rhine Basins. J. Hydrol. Earth Syst. Sci. 2009, 6, 5377–5413. [Google Scholar] [CrossRef]
- Ho, C.; Stephenson, D.; Collins, M.; Ferro, C.; Brown, S. Calibration strategies: A Source of Additional Uncertainty in Climate Change Projections. Bull. Am. Meteorol. Soc. 2012, 93, 21–26. [Google Scholar] [CrossRef]
- Mann, H.B. Non-parametric tests against trend. Econometrica 1945, 13, 245–259. [Google Scholar] [CrossRef]
- Kendall, M.G. Rank Correlation Methods, 4th ed.; Charles Griffin: London, UK, 1975; ISBN 978-0195208375. [Google Scholar]
- Amogne, A.; Belay, S.; Ali, H.; Amare, B. Variability and time series trend analysis of rainfall and temperature in northcentral Ethiopia: A case study in Woleka sub-basin. Weather Clim. Extrem. 2018, 19, 29–41. [Google Scholar]
- Elsa, C.; Andrés, M.; José, A.; Vincenzo, L. East Africa Rainfall Trends and Variability 1983–2015 Using Three Long-Term Satellite Products. Remote Sens. 2018, 10, 931. [Google Scholar] [CrossRef]
- Adeyeri, O.; Lamptey, B.; Lawin, A.; Sanda, I. Spatio-Temporal Precipitation Trend and Homogeneity Analysis in KomaduguYobe Basin, Lake Chad Region. J. Climatol. Weather Forecast. 2017, 5, 214. [Google Scholar]
- Birhanu, H.; Yingjun, C.; Zinabu, M.; Miseker, B. Temperature and Precipitation Trend Analysis over the last 30 years in Southern Tigray regional State, Ethiopia. J. Atmos. Pollut. 2017, 5, 18–23. [Google Scholar]
- Jie, W.; Hiroshi, I.; Wenchao, S.; Shaowei, N. Development and Interpretation of New Sediment Rating Curve Considering the Effect of Vegetation Cover for Asian Basins. Sci. World J. 2013, 2013, 9. [Google Scholar] [CrossRef]
- Nikita, I.T. Fitting sediment rating curves using regression analysis: A case study of Russian Arctic rivers. (In Proceedings of the Sediment Dynamics from the Summit to the Sea, New Orleans, LA, USA, 11–14 December 2014). Proc. IAHS 2014, 367, 193–198. [Google Scholar]
- Mamaru, A.M.; Fasikaw, A.Z.; Muluken, L.A.; Getaneh, K.A.; Dessalegn, C.D.; Seifu, A.T.; Tammo, S. Sediment concentration rating curves for a monsoonal climate: Upper Blue Nile. Soil 2016, 2, 337–349. [Google Scholar]
- Manfred, K.; Netsanet, C. SWAT-Modeling of the Impact of future Climate Change on the Hydrology and the Water Resources in the Upper Blue Nile River Basin, Ethiopia. In Proceedings of the ICWRER, Koblenz, Germany, 3–7 June 2013; pp. 488–523. [Google Scholar]
- Arnold, J.; Williams, J.; Maidment, D. Continuous time water and sediment routing model for large basins. J. Hydraul. Eng. 1995, 121, 171–183. [Google Scholar] [CrossRef]
- Abdi, B.; Desalegn, C.; Ekasit, K. Simulation of Sediment Yield using SWAT Model in Fincha Watershed, Ethiopia. Kasetsart J. Nat. Sci. 2012, 46, 283–297. [Google Scholar]
- Arnold, J.G.; Fohrer, N. SWAT2000: Current capabilities and research opportunities in applied watershed modeling. Hydrol. Proc. 2005, 19, 563–572. [Google Scholar] [CrossRef]
- Hargreaves, G.; Riley, J. Agricultural benefits for Senegal River Basin. J. Irrig. Drain. Eng. 1985, 111, 113–124. [Google Scholar] [CrossRef]
- Priestley, C.; Taylor, R. On the assessment of surface heat flux and Evaporation using large-scale parameters. Weather Rev. 1972, 100, 81–92. [Google Scholar] [CrossRef]
- Monteith, J. Evaporation and the environment in the state and movement of water in living organisms. In 19th Symposia of the Society for Experimental Biology; Cambridge University Press: London, UK, 1965. [Google Scholar]
- Abbaspour, K.; Yang, I.; Maximov, R.; Siber, K.; Bogner, J.; Mieleitner, J.; Zobrist, R. Modeling hydrology and water quality in the pre-alpine/alpine Thur watershed using SWAT. J. Hydrol. 2007, 333, 413–430. [Google Scholar] [CrossRef]
- Santhi, C.; Arnold, J.; Williams, W.; Dugas, R.; Srinivasan, M.; Hauck, L. Validation of the SWAT model on a large river basin with point and nonpoint sources. J. Am. Water Resour. Assoc. 2001, 37, 1169–1188. [Google Scholar] [CrossRef]
- Moriasi, D.; Arnold, J.; Van, M.; Binger, R.; Harmel, R.; Veith, T. Model evaluation guidelines for systematic quantification of accuracy in watershed simulations. TASABE 2007, 50, 885–900. [Google Scholar]
- Atlas (Climate Change Adaptation, Thought Leadership and Assessments). Climate Variability and Change in Ethiopia; Technical Report; Ask Order No. AID-OAA-I-14-00013, under the Restoring the Environment through Prosperity, Livelihoods, and Conserving Ecosystems (REPLACE) IDIQ; United States Agency for International Development: Washington, DC, USA, 2015.
- Jury, M.; Funk, C. Climatic trends over Ethiopia: Regional signals and drivers. Int. J. Climatol. 2013, 33, 1924–1935. [Google Scholar] [CrossRef]
- Guo, D.; Sun, J.; Yu, E. Evaluation of CORDEX regional climate models in simulating temperature and precipitation over the Tibetan Plateau. Atmos. Ocean. Sci. Lett. 2018, 11, 219–227. [Google Scholar] [CrossRef] [Green Version]
- Getahun, Y.S. Impact of Climate Change on Hydrology of the Upper Awash River Basin (Ethiopia): Inter-Comparison of Old SRES and New RCP Scenarios. Master’s Thesis, Wageningen University, Wageningen, The Netherlands, 2016. [Google Scholar]
- Daba, M.; Tadele, K.; Shimelis, A.; Melesse, A. Hydrological Response to climate change impacts and Adaptation Strategies of Upper Awash Sub-basin, in the Awash Basin, Ethiopia. In Proceedings of the International Conference on Climate-Change Impacts for Scientists & Stakeholders, Postdam, Germany, 11–13 October 2017. [Google Scholar]
- Kinfe, H. Impact climate change on the water resources of Awash River Basin. Clim. Res. 1999, 12, 91–96. [Google Scholar]
- National Meteorological Agency (NMA). National Meteorology Agency; Final Report on Evaluation Criteria for Identifying High Priority Adaptation Activities prepared by B and M Development Consultants for NMA; NMA: Addis Ababa, Ethiopia, 2007.
- McSweeney, C.; New, M.; Lizcano, G. UNDP Climate Change Country Profiles-Ethiopia; UNT Libraries: Denton, TX, USA, 2008. [Google Scholar]
- Benaman, J.; Christine, G.; Douglas, A. Calibration and validation of soil and water Assessment Tool on an Agricultural watershed in Upstate New York. J. Hydrol. Eng. ASCE 2005, 10, 363–374. [Google Scholar] [CrossRef]
- Sufiyan, A. Sediment Yield Estimation from Upper Awash Watershed: Sedimentation into Koka Reservoir. Master’s Thesis, Arba Minch University, Arba Minch, Ethiopia, 2014. [Google Scholar]
- Engidayehu, C. SWAT Based Estimation of Sediment Yield from Guder Watershed, Abbay Basin, Ethiopia. Master’s Thesis, Arba Minch University, Arba Minch, Ethiopia, 2014. [Google Scholar]
- Ayele, G.T.; Teshale, E.Z.; Yu, B.; Rutherfurd, I.D.; Jeong, J. Streamflow and Sediment Yield Prediction for Watershed Prioritization in the Upper Blue Nile River Basin, Ethiopia. Water 2017, 9, 782. [Google Scholar] [CrossRef]
- Nerantzaki, S.D.; Giannakis, G.V.; Efstathiou, D.; Nikolaidis, N.P.; Sibetheros, I.A.; Karatzas, G.P.; Zacharias, I. Modeling suspended sediment transport and assessing the impacts of climate change in a karstic Mediterranean watershed. Sci. Total. Environ. 2015, 538, 288–297. [Google Scholar] [CrossRef]
- Chimdessa, K.; Quraishi, S.; Kebede, A.; Alamirew, T. Effect of Land Use Land Cover and Climate Change on River Flow and Soil Loss in Didessa River Basin, South West Blue Nile, Ethiopia. Hydrology 2019, 6, 2. [Google Scholar] [CrossRef]
- Hurni, H. Soil Conservation Manual for Ethiopia; Ministry of Agriculture: Addis Ababa, Ethiopia, 1985.
- Dao, N.; Tadashi, S. Assessment of climate change impacts on hydrology and sediment yield in the river catchment, Vietnam. Hydraul. Eng. 2013, 69, 31–36. [Google Scholar]
- Cousino, L.K.; Becker, R.H.; Zmijewski, K.A. Modeling the effects of climate change on water, sediment, and nutrient yields from the Maumee River watershed. Journal of Hydrology: Regional Studies. J. Hydrol. Reg. Stud. 2015, 4, 762–775. [Google Scholar]
Stations | Latitude | Longitude | Elevation (m) | Missing (%) |
---|---|---|---|---|
Dubti | 11.72 | 41.01 | 376 | 6.62 |
Mersa | 12.13 | 39.63 | 1470 | 7.72 |
Kobbo | 11.66 | 39.67 | 1578 | 14.75 |
Bati | 11.2 | 40.02 | 1660 | 4.02 |
Descriptive Statistics | Precipitation (mm) | Tmax (°C) | Tmin (°C) | Sediment Yield (tons) |
---|---|---|---|---|
Max | 304.5 | 31.7 | 17.1 | 34547.3 |
Min | 58.0 | 30.2 | 15.5 | 381.6 |
SD | 54.3 | 0.4 | 0.4 | 7001.4 |
Mean | 125.4 | 31.1 | 16.4 | 4528.4 |
CV (%) | 43.3 | 1.3 | 2.3 | 154.6 |
p-value | 0.272 | 0.101 | 0.117 | 0.299 |
Alpha | 0.05 | 0.05 | 0.05 | 0.05 |
Mean Annual Precipitation (mm) | CV (%) | Bias (%) | Correlation | |
---|---|---|---|---|
Observed | 742.46 | 2.60 | - | - |
Bias-corrected RCP | 733.65 | 3.12 | −1.19 | 0.56 |
Un-corrected RCP | 408.86 | 2.32 | −44.93 | 0.34 |
Rank | Parameters | Descriptions | Fitted Value | Min | Max |
---|---|---|---|---|---|
1 | ALPHA_BF | Base flow alpha factor (days) | 0.785 | 0 | 1 |
2 | CH_K2 | Effective hydraulic conductivity of the main channel | 77.49 | −0.05 | 500 |
3 | GW_DELAY | Groundwater delay (days) | 362.5 | 0 | 500 |
4 | CN-2 | SCS (soil conservation service) runoff curve number for moisture condition—II | 0.1 | −0.25 | +0.25 |
5 | REVAPMN | Threshold depth of water in the shallow aquifer for “revap” to occur (mm) | 477.01 | 0 | 500 |
6 | RCHRG-DP | Deep aquifer percolation fraction | 0.385 | 0 | 1 |
7 | SOL_K | Saturated hydraulic conductivity (mm/hr) | 1546.78 | 0 | 2000 |
8 | GWQMN | The threshold depth of water in shallow required for return flow (mm) | 2134.87 | 0 | 5000 |
9 | SURLAG | Surface runoff lag time | 16.89 | 0.05 | 24 |
10 | SOL_AWC | Soil available water capacity | 0.05 | 0 | 1 |
11 | EPCO | Soil evaporation compensation factor | 0.69 | 0 | 1 |
12 | SOL_ALB | Moist soil albedo | 0.1 | 0 | 0.25 |
Variable | Calibration | Validation |
---|---|---|
R2 | 0.8 | 0.77 |
NSE | 0.73 | 0.63 |
PBIAS | +30.5 | +38.1 |
Rank | Parameters | Descriptions | Fitted Value | Min | Max |
---|---|---|---|---|---|
1 | SPCON | Linear factor for channel sediment routing | 0.005 | 0.0001 | 0.01 |
2 | SPEXP | Exponential factor for channel sediment routing | 1.387 | 1 | 2 |
3 | USLE-P | USLE support Practice factor | 0.275 | 0 | 1 |
Variable | Calibration | Validation |
---|---|---|
R2 | 0.83 | 0.85 |
NSE | 0.79 | 0.76 |
PBIAS | −23.4 | −25.0 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jilo, N.B.; Gebremariam, B.; Harka, A.E.; Woldemariam, G.W.; Behulu, F. Evaluation of the Impacts of Climate Change on Sediment Yield from the Logiya Watershed, Lower Awash Basin, Ethiopia. Hydrology 2019, 6, 81. https://doi.org/10.3390/hydrology6030081
Jilo NB, Gebremariam B, Harka AE, Woldemariam GW, Behulu F. Evaluation of the Impacts of Climate Change on Sediment Yield from the Logiya Watershed, Lower Awash Basin, Ethiopia. Hydrology. 2019; 6(3):81. https://doi.org/10.3390/hydrology6030081
Chicago/Turabian StyleJilo, Nura Boru, Bogale Gebremariam, Arus Edo Harka, Gezahegn Weldu Woldemariam, and Fiseha Behulu. 2019. "Evaluation of the Impacts of Climate Change on Sediment Yield from the Logiya Watershed, Lower Awash Basin, Ethiopia" Hydrology 6, no. 3: 81. https://doi.org/10.3390/hydrology6030081