Relative Effect of Location Alternatives on Urban Hydrology. The Case of Greater Port-Harcourt Watershed, Niger Delta
<p>(<b>a</b>) Map showing the Greater Port-Harcourt (GPH) Phase 1 location alternatives in the studied watershed. (<b>b</b>) Land-use/land cover layout of the GPH Master plan showing position of Phases 1, 2 and 3 areas within the new city (Source: Greater Port-Harcourt Development Authority (GPHDA), 2008).</p> "> Figure 1 Cont.
<p>(<b>a</b>) Map showing the Greater Port-Harcourt (GPH) Phase 1 location alternatives in the studied watershed. (<b>b</b>) Land-use/land cover layout of the GPH Master plan showing position of Phases 1, 2 and 3 areas within the new city (Source: Greater Port-Harcourt Development Authority (GPHDA), 2008).</p> "> Figure 2
<p>Map of the Greater Port-Harcourt watershed showing the sub-basins of the studied watershed.</p> "> Figure 3
<p>SCS unit hydrograph.</p> "> Figure 4
<p>Basin peak flow response to GPH Phase 1 development in three alternative locations. It shows changes due to the Bori alternative location, which was considerably higher than changes in all other basins.</p> "> Figure 5
<p>Sub-basin peak flow response to the Phase 1 alternative in the Degema Basin. Changes in the right direction represent negative changes. It shows changes in DEG 140 were higher than changes in other sub-basins in the Degema Basin.</p> "> Figure 6
<p>Sub-basin peak flow response to the Phase 1 alternative in the Andoni-Ogoni Basin. Changes in the right direction represent negative changes. It shows changes in sub-basins AO W50 and AO W40 were greater than changes in the AO W60 sub-basin.</p> "> Figure 7
<p>Sub-basin peak flow response to the Phase 1 alternative in the Port-Harcourt/Bonny Basin. Changes in the right direction represent negative changes. It demonstrates that changes in peak flow due to the Phase 1 alternative was greater than changes in peak flow due to the 2003 conditions. In this basin, sub-basin PHC210 experienced the highest peak flow.</p> "> Figure 8
<p>Sub-basin peak flow response to the Phase 1 alternative in the Buguma Basin. Changes in the right direction represent negative changes. It demonstrates that changes in peak flow due to the Buguma alternative was greater than changes in peak flow due to the 2003 conditions. In this basin, sub-basin BUG 140 experienced the highest peak flow.</p> ">
Abstract
:1. Introduction
2. Study Area
2.1. Description of Study Area
2.2. Description of Project
3. Materials and Methods
3.1. Data Acquisition
Soil, Topographical and Rainfall Data
3.2. Acquisition of Land Use Data and Processing
3.3. Mapping the Alternative Locations
3.4. Hydrologic Modelling
3.4.1. The Hydrological Model
3.4.2. Model Pre-Processing
3.5. Model Set Up
3.5.1. Loss Model
3.5.2. Runoff Model
- A = the drainage area,
- Q = the runoff volume (excess rainfall; derived from Eq. 4.7),
- TP = the time to peak in hours,
- qP = the peak flow.
3.5.3. Routing
3.6. Model Application
3.6.1. Basin Model
3.6.2. Precipitation Model
3.6.3. Control Model
3.7. Model Calibration
3.8. Model Validation
4. Results
Relative Effects of Phase 1 Location Alternative on Sub-Basin Hydrology
5. Discussion
Effects of Developmental Alternatives on Sub-Basin Hydrology
6. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- IFRC. World Disasters Report: Focus on Culture and Risk; IFRC: Geneva, Switzerland, 2014. [Google Scholar]
- Jha, A.K.; Bloch, R.; Lamond, J. Cities and Flooding: A Guide to Integrated Urban Flood Risk Management for the 21st Century; World Bank Publications: Washinghton, DC, USA, 2012. [Google Scholar]
- Cho, S.-H.; Kim, H.; Roberts, R.K.; Kim, T.; Lee, D. Effects of changes in forestland ownership on deforestation and urbanization and the resulting effects on greenhouse gas emissions. J. For. Econ. 2014, 20, 93–109. [Google Scholar] [CrossRef]
- Du, J.; Qian, L.; Rui, H.; Zuo, T.; Zheng, D.; Xu, Y.; Xu, C.Y. Assessing the effects of urbanization on annual runoff and flood events using an integrated hydrological modeling system for Qinhuai River basin, China. J. Hydrol. 2012, 464, 127–139. [Google Scholar] [CrossRef]
- Hejazi, M.I.; Markus, M. Impacts of urbanization and climate variability on floods in Northeastern Illinois. J. Hydrol. Eng. 2009, 14, 606–616. [Google Scholar] [CrossRef]
- Hollis, G.E. The effect of urbanization on floods of different recurrence interval. Water Resour. Res. 1975, 11, 431–435. [Google Scholar] [CrossRef]
- Islam, T.; Ryan, J. Chapter 3-The Role of Governments in Hazard Mitigation. In Hazard Mitigation in Emergency Management; Islam, T., Ryan, J., Eds.; Butterworth-Heinemann: Oxford, UK, 2016; pp. 69–100. [Google Scholar] [CrossRef]
- Elliott, A.H.; Spigel, R.H.; Jowett, I.G.; Shankar, S.U.; Ibbitt, R.P. Model application to assess effects of urbanisation and distributed flow controls on erosion potential and baseflow hydraulic habitat. Urban Water J. 2010, 7, 91–107. [Google Scholar] [CrossRef]
- Hu, S.; Zhi-mao, G.; Jun-ping, Y. The impacts of urbanization on soil erosion in the Loess Plateau region. J. Geogr. Sci. 2001, 11, 282–290. [Google Scholar] [CrossRef]
- Putro, B.; Kjeldsen, T.R.; Hutchins, M.G.; Miller, J. An empirical investigation of climate and land-use effects on water quantity and quality in two urbanising catchments in the southern United Kingdom. Sci. Total Environ. 2016, 548, 164–172. [Google Scholar] [CrossRef] [PubMed]
- Tu, M.-C.; Smith, P.; Filippi, A.M. Hybrid forward-selection method-based water-quality estimation via combining Landsat TM, ETM+, and OLI/TIRS images and ancillary environmental data. PLoS ONE 2018, 13, e0201255. [Google Scholar] [CrossRef]
- Sanderson, D.; Sharma, A. World Disasters Report 2016. In Resilience: Saving Lives Today, Investing for Tomorrow; International Federation of Red Cross and Red Crescent Societies: Geneva, Switzerland, 2016. [Google Scholar]
- Tang, Z.; Engel, B.A.; Pijanowski, B.C.; Lim, K.J. Forecasting land use change and its environmental impact at a watershed scale. J. Environ. Manag. 2005, 76, 35–45. [Google Scholar] [CrossRef] [PubMed]
- Baloch, M.A.; Ames, D.P.; Tanik, A. Hydrologic impacts of climate and land-use change on Namnam Stream in Koycegiz Watershed, Turkey. Int. J. Environ. Sci. Technol. 2015, 12, 1481–1494. [Google Scholar] [CrossRef]
- Leopold, L. Hydrology for Urban Planning; US Geological Survey: Washington, DC, USA, 1968.
- Lazaro, T.R. Urban Hydrology; Revised Edition; CRC Press: Boca Raton, FA, USA, 1990. [Google Scholar]
- Booth, D.B. Urbanization and the Natural Drainage System--Impacts, Solutions, and Prognoses. Northwest Environ. J. 1991, 7, 93–118. [Google Scholar]
- Pauleit, S.; Duhme, F. Assessing the environmental performance of land cover types for urban planning. Landsc. Urban Plan. 2000, 52, 1–20. [Google Scholar] [CrossRef]
- Wheater, H.; Evans, E. Land use, water management and future flood risk. Land Use Policy 2009, 26, S251–S264. [Google Scholar] [CrossRef]
- Sadler, B. International Study of the Effectiveness of Environmental Assessment; IAIA: Santa Fe, Mexico, 1996; p. 263. [Google Scholar]
- Glasson, J.; Salvador, N.N.B. EIA in Brazil: A procedures–practice gap. A comparative study with reference to the European Union, and especially the UK. Environ. Impact Assess. Rev. 2000, 20, 191–225. [Google Scholar] [CrossRef]
- Mondal, M.K.; Dasgupta, B.V. EIA of municipal solid waste disposal site in Varanasi using RIAM analysis. Resour. Conserv. Recycl. 2010, 54, 541–546. [Google Scholar] [CrossRef]
- Wood, C. Environmental Impact Assessment in Developing Countries. Int. Dev. Plan. Rev. 2013, 25. [Google Scholar] [CrossRef]
- Saddler, B. Environmental Assessment in a Changing World: Evaluating Practice to Improve Performance; Canadian Environmental Assessment Agency: Ottawa, ON, Canada, 1996. [Google Scholar]
- Wood, C. Environmental Impact Assessment: A Comparative Review, 2nd ed.; Pearson Education Limited: London, UK, 2003. [Google Scholar]
- UNECA. Review of the Application of Environmental Impact Assessment in Selected African Countries; Economic Commission for Africa: Addis Ababa, Ethiopia, 2005. [Google Scholar]
- Morgan, R.K. Environmental impact assessment: The state of the art. Impact Assess. Proj. Apprais. 2012, 30, 5–14. [Google Scholar] [CrossRef]
- Glasson, J.; Therivel, R.; Chadwick, A. Introduction to Environmental Impact Assessment, 3rd ed.; Routledge: Oxford, UK, 2005. [Google Scholar]
- Ewing, R.H. Characteristics, causes, and effects of sprawl: A literature review. In Urban Ecology; Springer: Boston, MA, USA, 2008; pp. 519–535. [Google Scholar]
- Du, S.; Shi, P.; Van Rompaey, A.; Wen, J. Quantifying the impact of impervious surface location on flood peak discharge in urban areas. Nat. Hazards 2015, 76, 1457–1471. [Google Scholar] [CrossRef]
- Mejía, A.I.; Moglen, G.E. Spatial patterns of urban development from optimization of flood peaks and imperviousness-based measures. J. Hydrol. Eng. 2009, 14, 416–424. [Google Scholar] [CrossRef]
- Su, W.; Ye, G.; Yao, S.; Yang, G. Urban land pattern impacts on floods in a new district of China. Sustainability 2014, 6, 6488–6508. [Google Scholar] [CrossRef]
- Theobald, D.M.; Hobbs, N.T. A framework for evaluating land use planning alternatives: Protecting biodiversity on private land. Conserv. Ecol. 2002, 6, 5. [Google Scholar] [CrossRef]
- González, A.; Thérivel, R.; Fry, J.; Foley, W. Advancing practice relating to SEA alternatives. Environ. Impact Assess. Rev. 2015, 53, 52–63. [Google Scholar] [CrossRef]
- DEAT. Criteria for Determining Alternatives in EIA, Integrated Environmental Management; Information Series 11; Department of Environmental Affairs and Tourism: Pretoria, South Africa, 2004.
- Steinemann, A. Improving alternatives for environmental impact assessment. Environ. Impact Assess. Rev. 2001, 21, 3–21. [Google Scholar] [CrossRef]
- João, E. Key Principles of SEA. In Implementing Strategic Environmental Assessment; Schmidt, M., João, E., Albrecht, E., Eds.; Springer: Heidelberg/Berlin, Germany, 2005; Volume 2, pp. 3–14. [Google Scholar]
- Scannapieco, D.; Naddeo, V.; Belgiorno, V. Sustainable power plants: A support tool for the analysis of alternatives. Land Use Policy 2014, 36, 478–484. [Google Scholar] [CrossRef]
- Kim, S.; Ryu, Y. Describing the spatial patterns of heat vulnerability from urban design perspectives. Int. J. Sustain. Dev. World Ecol. 2015, 22, 189–200. [Google Scholar] [CrossRef]
- Nicolaisen, M.S.; Næss, P. Roads to nowhere: The accuracy of travel demand forecasts for do-nothing alternatives. Transp. Policy 2015, 37, 57–63. [Google Scholar] [CrossRef]
- Cookey-Gam, A. An Overview of the Greater portHarcourt City Master Plan and Opportunities in Building a World Class City over the Next 20Years; Greater Port-Harcourt City Development Authourity: Port Harcourt, Nigeria, 2010. [Google Scholar]
- Verml. Greater Port-Harcourt City Phase 1A Development Environmental Impact Assessment; Greater Port-Harcourt City Development Authourity: Port Harcourt, Nigeria, 2009. [Google Scholar]
- Akukwe, T.I.; Ogbodo, C. Spatial Analysis of Vulnerability to Flooding in Port Harcourt Metropolis. Nigeria. Sage Open 2015, 5. [Google Scholar] [CrossRef]
- SPDC. Environmental Impact Assessment for Afam FDP (Gas Supply) Project; The Shell Petroleum Development Company of Nigeria: Abuja, Nigeria, 2007. [Google Scholar]
- Chiadikobi, K.C.; Omoboriowo, A.O.; Chiaghanam, O.I.; Opatola, A.O.; Oyebanji, O. Flood Risk Assessment of Port Harcourt, Rivers State, Nigeria. Adv. Appl. Sci. Res. 2011, 2, 287–298. [Google Scholar]
- Ede, P.N.; Owei, O.B.; Akarolo, C.I. Does the Greater Port Harcourt Master Plan 2008 meet Aspirations for Liveable City. In Proceedings of the 47th ISOCARP Congress, Wuhan, China, 24–28 October 2011; p. 12. [Google Scholar]
- Demographia. Demographia World Urban Areas; Demographia: Belleville, IL, USA, 2017. [Google Scholar]
- Ikechukwu, E.E. The Socio-Economic Impact of the Greater Port Harcourt Development Project on the Residents of the Affected Areas. Open J. Soc. Sci. 2015, 3, 82. [Google Scholar] [CrossRef]
- Izeogu, C.V. Urban development and the environment in Port Harcourt. Environ. Urban. 1989, 1, 59–68. [Google Scholar] [CrossRef] [Green Version]
- Glasson, J.; Therivel, R.; Chadwick, A. Introduction to Environmental Impact Assessment; Routledge: Abingdon, UK, 2013. [Google Scholar]
- USDA. Hydrologic Soils Group (HSG); Natural Resources Conservation Service, United States Department of Agriculture: Washington, DC, USA, 2014; p. 1.
- Feldman. Hydrologic Modeling System HEC–HMS, Technical Reference Manual; US Army Corps or Engineers-Hydrologic Engineering Center: Washington, DC, USA, 2000.
- Roger, C. Urban hydrology for small watersheds. Tech. Release 1986, 55, 2–6. [Google Scholar]
- Yan, K.; Di Baldassarre, G.; Solomatine, D.P. Exploring the potential of SRTM topographic data for flood inundation modelling under uncertainty. J. Hydroinform. 2013, 15, 849–861. [Google Scholar] [CrossRef]
- Satgé, F.; Arsen, A.; Bonnet, M.; Timouk, F.; Calmant, S.; Pilco, R.; Molina, J.; Lavado, W.; Crétaux, J. Quality assessment of Digital Elevation Model (DEM) in view of the Altiplano hydrological modeling. In Proceedings of AGU Spring Meeting Abstracts; American Geophysical Union: Washington, DC, USA, 2013. [Google Scholar]
- Falorni, G.; Teles, V.; Vivoni, E.R.; Bras, R.L.; Amaratunga, K.S. Analysis and characterization of the vertical accuracy of digital elevation models from the Shuttle Radar Topography Mission. J. Geophys. Res. Earth Surf. 2005, 110. [Google Scholar] [CrossRef]
- Wang, W.; Yang, X.; Yao, T. Evaluation of ASTER GDEM and SRTM and their suitability in hydraulic modelling of a glacial lake outburst flood in southeast Tibet. Hydrol. Process. 2012, 26, 213–225. [Google Scholar] [CrossRef]
- Patro, S.; Chatterjee, C.; Singh, R.; Raghuwanshi, N.S. Hydrodynamic modelling of a large flood-prone river system in India with limited data. Hydrol. Process. 2009, 23, 2774–2791. [Google Scholar] [CrossRef]
- Lunetta, R.S.; Knight, J.F.; Ediriwickrema, J.; Lyon, J.G.; Worthy, L.D. Land-cover change detection using multi-temporal MODIS NDVI data. Remote Sens. Environ. 2006, 105, 142–154. [Google Scholar] [CrossRef]
- Yang, X.t.; Liu, H.; Gao, X. Land cover changed object detection in remote sensing data with medium spatial resolution. Int. J. Appl. Earth Obs. Geoinf. 2015, 38, 129–137. [Google Scholar] [CrossRef]
- Lu, D.; Mausel, P.; Brondízio, E.; Moran, E. Change detection techniques. Int. J. Remote Sens. 2004, 25, 2365–2401. [Google Scholar] [CrossRef]
- Tsui, O.W.; Coops, N.C.; Wulder, M.A.; Marshall, P.L.; McCardle, A. Using multi-frequency radar and discrete-return LiDAR measurements to estimate above-ground biomass and biomass components in a coastal temperate forest. Isprs J. Photogramm. Remote Sens. 2012, 69, 121–133. [Google Scholar] [CrossRef]
- Parent, J.R.; Volin, J.C.; Civco, D.L. A fully-automated approach to land cover mapping with airborne LiDAR and high resolution multispectral imagery in a forested suburban landscape. Isprs J. Photogramm. Remote Sens. 2015, 104, 18–29. [Google Scholar] [CrossRef]
- USACE. HEC-GeoHMS Geospatial Hydrologic MOdelling Extention: User’s Manual Version 4.2; US Army Coprs of Engineers Institute of Water REsources Hydrologic Engineering Centre: Califonia, CA, USA, 2009. [Google Scholar]
- USACE. Hydrologic Modeling System HEC-HMS: User’s Manual Version 4.0; US Army Corps of Engineers Institute for Water Centre: Califonia, CA, USA, 2013.
- Ford, D.; Pingel, N.; DeVries, J. Hydrologic Modeling System HEC-HMS: Applications Guide; US Army Corps of Engineers, Hydrologic Engineering Center: Washington, DC, USA, 2002.
- Song, X.-M.; Kong, F.-Z.; Zhu, Z.-X. Application of Muskingum routing method with variable parameters in ungauged basin. Water Sci. Eng. 2011, 4, 1–12. [Google Scholar] [CrossRef]
- Roy, S.; Mistri, B. Estimation of peak flood discharge for an ungauged river: A case study of the Kunur River, West Bengal. Geogr. J. 2013, 2013. [Google Scholar] [CrossRef]
- Lange, J.; Leibundgut, C. Non-calibrated arid zone rainfall-runoff modelling. In The Hydrology–Geomorphology Interface: RAINFALL, Floods, Sedimentation, Land Use, Proceedings of the Jerusalem Conference, Jerusalem, Israel, May 1999; IAHS Press: Wallingford, UK, 2000. [Google Scholar]
- Okoro, B.; Uzoukwu, R. Streamflow Models of Imo River for Regional Water Resources Allocation. Int. J. Eng. Sci. (IJES) 2013, 2, 97–103. [Google Scholar]
- Chai, T.; Draxler, R.R. Root mean square error (RMSE) or mean absolute error (MAE)?–Arguments against avoiding RMSE in the literature. Geosci. Model Dev. 2014, 7, 1247–1250. [Google Scholar] [CrossRef]
- Knebl, M.; Yang, Z.-L.; Hutchison, K.; Maidment, D. Regional scale flood modeling using NEXRAD rainfall, GIS, and HEC-HMS/RAS: A case study for the San Antonio River Basin Summer 2002 storm event. J. Environ. Manag. 2005, 75, 325–336. [Google Scholar] [CrossRef] [PubMed]
- Sorrell, R.C. Computing Flood Discharges for Small Ungaged Warersheds; Geological and Land Management Division, Michigan Department of Environmental Quality: Lansing, MI, USA, 2010.
- González, A.; Gilmer, A.; Foley, R.; Sweeney, J.; Fry, J. Applying geographic information systems to support strategic environmental assessment: Opportunities and limitations in the context of Irish land-use plans. Environ. Impact Assess. Rev. 2011, 31, 368–381. [Google Scholar] [CrossRef] [Green Version]
- Oleyiblo, J.O.; Li, Z. Application of HEC-HMS for flood forecasting in Misai and Wan’an catchments in China. Water Sci. Eng. 2010, 3, 14–22. [Google Scholar] [CrossRef]
- Fabricius, K.E. Effects of terrestrial runoff on the ecology of corals and coral reefs: Review and synthesis. Mar. Pollut. Bull. 2005, 50, 125–146. [Google Scholar] [CrossRef]
FAO’s Soil Type | Texture | HSG Code | Infiltration Rate |
---|---|---|---|
Fluvosol | Clay | D | Very low |
Gleysol | Clay | D | Very low |
Ferrosol | Sandy clay | C | Low |
Reaches | Length (m) | Slope | Manning | Shape | Side Slope | Width (m) |
---|---|---|---|---|---|---|
AO | ||||||
R30 | 28,037 | 0.2198 | 0.05 | Triangle | 0.0522 | |
PHC/BNY | ||||||
R40 | 3620.7 | 0.0022 | 0.05 | Triangle | 0.667 | |
R60 | 8782.2 | 0.0255 | 0.05 | Triangle | 0.0185 | |
R70 | 14,350 | 0.22 | 0.05 | Rectangle | 365.71 | |
R90 | 3888.9 | 0.041 | 0.05 | Rectangle | 1691.84 | |
R110 | 16,016 | 0.055 | 0.05 | Rectangle | 6114.18 | |
R150 | 130.82 | 0.002 | 0.05 | Rectangle | 3017.27 | |
R130 | 65.409 | 0.69 | 0.05 | Rectangle | 3017.27 | |
BUGUMA | ||||||
R50 | 55,893 | 0.005 | 0.05 | Triangle | 0.0304 | |
R60 | 23,343 | 0.017228 | 0.05 | Triangle | 0.042 | |
R70 | 46.251 | 0.000025 | 0.05 | Rectangle | 364.46 | |
R80 | 32,259 | 0.000025 | 0.05 | Trapezoid | 0.024 | 90.6 |
DEGEMA | ||||||
R40 | 8046.1 | 0.0022 | 0.32 | Triangle | 0.23 | |
R60 | 11,313 | 0.225 | 0.32 | Triangle | 0.0077 | |
R70 | 9072.9 | 0.22 | 0.05 | Triangle | 0.042 | |
R90 | 13,852 | 0.041 | 0.05 | Triangle | 0.086 | |
R110 | 65.409 | 0.055 | 0.05 | Rectangle | 549.66 | |
R120 | 15,055 | 0.69 | 0.05 | Rectangle | 915 |
Year | Observed Qp (m3/s) | Estimated Qp (m3/s) | Absolute Error (AE) | Squared Error (SE) | Relative Error (RE) | Relative Percentage Error (RPE) |
---|---|---|---|---|---|---|
1985 | 286.16 | 273.15 | 13.13 | 169.02 | 0.05 | 4.54 |
1986 | 200.02 | 279.63 | 79.61 | 6336.16 | 0.40 | 39.80 |
1987 | 223.20 | 255.32 | 32.10 | 1030.41 | 0.14 | 14.38 |
1988 | 307.81 | 280.60 | 27.23 | 739.84 | 0.09 | 8.84 |
Performance Criteria | Values |
---|---|
MAE | 37.98 |
RMSE | 45.49 |
MRPE | 16.89% |
Location Alternative | Host Basin Code | Sub-Basin Code | Area (km2) | Qp-2003 | Qp-Phase 1 Alternative |
---|---|---|---|---|---|
(m3/s) | (m3/s) | ||||
Bori | Andoni/Ogoni Basin | AOW60 | 209.57 | 327.60 | 326.40 |
AOW40 | 178.85 | 191.10 | 212.90 | ||
AO W50 | 140.11 | 151.30 | 182.50 | ||
AO Outlet | 528.531 | 650.2 | 710.8 |
Location Alternative | Host Basin Code | Sub-Basin Code | Area (km2) | Qp-2003 | Qp-Phase 1 Alternative |
---|---|---|---|---|---|
(m3/s) | (m3/s) | ||||
Omoku Area | Degema Basin | DEGW250 | 144.82 | 245.80 | 245.90 |
DEGW240 | 131.27 | 208.80 | 208.80 | ||
DEGW230 | 45.45 | 74.60 | 74.60 | ||
DEGW220 | 86.41 | 165.00 | 165.10 | ||
DEGW210 | 76.08 | 79.70 | 79.80 | ||
DEGW200 | 46.20 | 80.60 | 80.70 | ||
DEGW190 | 75.31 | 119.00 | 118.90 | ||
DEGW180 | 61.55 | 81.70 | 81.70 | ||
DEGW170 | 139.34 | 204.40 | 204.40 | ||
DEGW160 | 23.33 | 37.50 | 37.60 | ||
DEGW150 | 94.70 | 104.00 | 103.90 | ||
DEGW140 | 247.15 | 257.30 | 265.70 | ||
DEG Outlet | 1171.61 | 1229.8 | 1238.5 |
Location Alternative | Host Basin Code | Sub-basin Code | Area (km2) | Qp-2003 | Qp-Phase 1 Alternative |
---|---|---|---|---|---|
(m3/s) | (m3/s) | ||||
Current Location | Port-Harcourt/Bonny Basin | PHCW160 | 111.71 | 107.10 | 108.50 |
PHCW180 | 114.87 | 123.70 | 123.70 | ||
PHCW190 | 88.42 | 123.80 | 123.80 | ||
PHCW200 | 31.05 | 58.20 | 58.10 | ||
PHCW210 | 114.84 | 138.90 | 146.70 | ||
PHCW220 | 81.67 | 159.50 | 159.50 | ||
PHCW230 | 203.95 | 168.60 | 168.40 | ||
PHCW240 | 188.94 | 343.90 | 343.80 | ||
PHCW250 | 90.99 | 113.60 | 113.40 | ||
PHCW260 | 14.08 | 28.20 | 28.20 | ||
PHCW300 | 183.80 | 345.10 | 345.10 | ||
PHC Outlet | 1224.32 | 1476.80 | 1485.20 |
Location Alternative | Host Basin | Sub-Basin Code | Area (km2) | Qp-2003 | Qp-Phase 1 Alternative |
---|---|---|---|---|---|
(m3/s) | (m3/s) | ||||
Current location | Buguma Basin | BUGW180 | 76.87 | 154.20 | 154.20 |
BUGW160 | 178.20 | 347.80 | 347.80 | ||
BUGW150 | 121.50 | 148.60 | 148.50 | ||
BUGW140 | 151.76 | 126.80 | 138.60 | ||
BUGW130 | 187.56 | 137.20 | 137.20 | ||
BUGW120 | 344.67 | 264.20 | 264.20 | ||
BUGW110 | 73.13 | 61.30 | 61.30 | ||
BUGW100 | 116.70 | 110.80 | 110.80 | ||
BUG Outlet | 1250.395 | 840.6 | 853.2 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dan-Jumbo, N.G.; Metzger, M. Relative Effect of Location Alternatives on Urban Hydrology. The Case of Greater Port-Harcourt Watershed, Niger Delta. Hydrology 2019, 6, 82. https://doi.org/10.3390/hydrology6030082
Dan-Jumbo NG, Metzger M. Relative Effect of Location Alternatives on Urban Hydrology. The Case of Greater Port-Harcourt Watershed, Niger Delta. Hydrology. 2019; 6(3):82. https://doi.org/10.3390/hydrology6030082
Chicago/Turabian StyleDan-Jumbo, Nimi G., and Marc Metzger. 2019. "Relative Effect of Location Alternatives on Urban Hydrology. The Case of Greater Port-Harcourt Watershed, Niger Delta" Hydrology 6, no. 3: 82. https://doi.org/10.3390/hydrology6030082