Impacts of Climate Change on Soil Erosion in the Great Lakes Region
<p>Great Lakes region states.</p> "> Figure 2
<p>Modern land cover map of three states within the Great Lakes region together with watersheds and gauge stations for model hydrological calibration [<a href="#B21-water-10-00715" class="html-bibr">21</a>].</p> "> Figure 3
<p>DEM of the Great Lakes region.</p> "> Figure 4
<p>Uncertainty analysis of VIC-WEPP model in simulating soil loss at Waseca, MN.</p> "> Figure 5
<p>Seasonal changes of precipitation and air temperature over four seasons throughout three future periods under three SRES scenarios.</p> "> Figure 6
<p>Seasonal changes of soil moisture, ET, runoff, and soil loss changes over three future periods under three SRES scenarios.</p> "> Figure 7
<p>Seasonal changes of precipitation, air temperature, runoff, and soil loss with slope gradients in cropland under the A2 scenario.</p> ">
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Region
2.2. Model Description
2.3. General Circulation Models (GCMs) and Green House Gas (GHG) Scenarios
2.4. Calibration and Validation
2.5. Uncertainty Analysis
3. Results
3.1. Uncertainty Analysis of VIC-WEPP Model with GLUE Method
3.2. Analysis of Climate Change for the Great Lakes Region
3.3. Analysis of Runoff under Climate Change
3.4. Analysis of Soil Loss under Climate Change
3.5. Impacts of Steep Slopes on Soil Loss Responses to Climate Change
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Conflicts of Interest
References
- Kling, G.W.; Hayhoe, K.; Johnson, L.B.; Magnuson, J.J.; Polasky, S.; Robinson, S.K.; Shuter, B.J.; Wander, M.M.; Wuebbles, D.J.; Zak, D.R. (Eds.) Confronting Climate Change in the Great Lakes Region: Impacts on Our Communities and Ecosystems; UCS Publications: Cambridge, MA, USA, 2003. [Google Scholar]
- Hayhoe, K.; Dorn, J.V.; Croley, T.; Schlegal, N.; Wuebbles, D. Regional climate change projections for Chicago and the U.S. Great Lakes. J. Great Lakes Res. 2010, 36, 7–21. [Google Scholar] [CrossRef]
- Cruce, T.; Yurkovich, E. Adapting to Climate Change: A Planning Guide for State Castal Managers—A Great Lakes Supplement; NOAA Office of Ocean and Coastal Resource Management: Silver Spring, MD, USA, 2011. [Google Scholar]
- Chagnon, F.J.F.; Bras, R.L. Contemporary climate change in the Amazon. Geophys. Res. Lett. 2005, 32, 1–4. [Google Scholar] [CrossRef]
- Cherkauer, K.A.; Sinha, T. Hydrologic impacts of projected future climate change in the Lake Michigan region. J. Great Lakes Res. 2010, 36, 33–50. [Google Scholar] [CrossRef]
- Trapp, R.J.; Deffenbaugh, N.S.; Brooks, H.E.; Baldwin, M.E.; Robinson, E.D.; Pal, J.S. Changes in severe thunderstorm environment frequency during the 21st century caused by anthropogenically enhanced global radiative forcing. Proc. Natl. Acad. Sci. USA, 2007, 104, 19719–19723. [Google Scholar] [CrossRef] [Green Version]
- Zhang, Y.; Hernandez, M.; Anson, E.; Nearing, M.A.; Wei, H.; Stone, J.J.; Heilman, P. Modeling climate change effects on runoff and soil erosion in southeastern Arizona rangelands and implications for mitigation with conservation practices. J. Soil Water Conserv. 2012, 67, 390–405. [Google Scholar] [CrossRef] [Green Version]
- Zhang, Y.G.; Nearing, M.A.; Zhang, X.C.; Xie, Y.; Wei, H. Projected rainfall erosivity changes under climate change from multimodel and multiscenario projections in Northeast China. J. Hydrol. 2010, 384, 97–106. [Google Scholar] [CrossRef]
- Pruski, F.F.; Nearing, M.A. Climate-induced changes in erosion during the 21st century for eight U.S. locations. Water Resour. Res. 2002, 38, 1298. [Google Scholar] [CrossRef]
- Pruski, F.F.; Nearing, M.A. Runoff and soil loss responses to changes in precipitation: A computer simulation study. J. Soil Water Conserv. 2002, 57, 7–16. [Google Scholar]
- O’Neal, R.M.; Nearing, M.A.; Vining, R.C.; Southworth, J.; Pfeifer, R.A. Climate change impacts on soil erosion in Midwest United States with changes in crop management. Catena 2005, 61, 165–184. [Google Scholar] [CrossRef]
- Sinha, T.; Cherkauer, K.A. Impacts of future climate change on soil frost in the Midwestern United States. J. Geophys. Res. 2010, 115, 1–16. [Google Scholar] [CrossRef]
- Edwards, W.M.; Owens, L.B. Large storm effects on total soil erosion. J. Soil Water Conserv. 1991, 46, 75–78. [Google Scholar]
- González-Hidalgo, J.G.; Peña-Monné, J.L.; de Luis, M. A review of daily soil erosion in Western Mediterranean areas. Catena 2007, 71, 193–199. [Google Scholar] [CrossRef]
- Nearing, M.A.; Jetten, V.; Baffaut, C.; Cerdan, O.; Couturier, A.; Hernandez, M.; le Bissonnais, Y.; Nichols, M.H.; Nunes, J.P.; Renschler, C.S.; et al. Modeling response of soil erosion and runoff to changes in precipitation and cover. Catena 2005, 61, 131–154. [Google Scholar] [CrossRef]
- Flanagan, D.C.; Nearing, M.A. (Eds.). USDA—Water Erosion Prediction Project Hillslope Profile and Watershed Model Documentation; NSERL Report No. 10; USDA-ARS National Soil Erosion Research Laboratory: West Lafayette, IN, USA, 1995. [Google Scholar]
- Flanagan, D.C.; Gilley, J.E.; Franti, T.G. Water Erosion Prediction Project (WEPP): Development history, model capabilities, and future enhancements. Trans. Am. Soc. Agric. Biol. Eng. 2007, 50, 1603–1612. [Google Scholar] [CrossRef]
- Nearing, M.A.; Wei, H.; Stone, J.J.; Pierson, F.B.; Spaeth, K.E.; Weltz, M.A.; Flanagan, D.C.; Hernandez, M. A rangeland hydrology and erosion model. Trans. Am. Soc. Agric. Biol. Eng. 2011, 54, 901–908. [Google Scholar] [CrossRef]
- Zhang, X.C.; Nearing, M.A. Impact of climate change on soil erosion, runoff, and wheat productivity in central Oklahoma. Catena 2005, 61, 185–195. [Google Scholar] [CrossRef]
- Mao, D.; Cherkauer, K.A.; Flanagan, D.C. Development of a coupled soil erosion and large-scale hydrology modeling system. Water Resour. Res. 2010, 46, 1–15. [Google Scholar] [CrossRef]
- Liang, X.; Lettenmaier, D.P.; Wood, E.F.; Burges, S.J. A simple hydrologically based model of land surface water and energy fluxes for general circulation models. J. Geophys. Res. 1994, 99, 14415–14428. [Google Scholar] [CrossRef]
- Liang, X.; Lettenmaier, D.P.; Wood, E.F. One-dimensional statistical dynamic representation of subgrid variability of precipitation in the two-layer variable infiltration capacity model. J. Geophys. Res. 1996, 101, 403–422. [Google Scholar] [CrossRef]
- Cherkauer, K.A.; Bowling, L.C.; Lettenmaier, D.P. Variable infiltration capacity cold land process model updates. Glob. Planet. Chang. 2003, 38, 151–159. [Google Scholar] [CrossRef]
- Flanagan, D.C.; Frankenberger, J.R.; Ascough, J.C., II. WEPP: Model use, calibration, and validation. Trans. Am. Soc. Agric. Biol. Eng. 2012, 55, 1463–1477. [Google Scholar] [CrossRef]
- Flanagan, D.C.; Nearing, M.A. Sediment particle sorting on hillslope profiles in the WEPP model. Trans. Am. Soc. Assoc. Eng. 2000, 43, 573–583. [Google Scholar] [CrossRef]
- Miller, D.A.; White, R.A. A conterminous United States multi-layer soil characteristics data set for regional climate and hydrology modeling. Earth Interact. 1998, 2, 1–26. [Google Scholar] [CrossRef]
- Mao, D.; Cherkauer, K.A. Impacts of land-use change on hydrologic responses in the Great Lakes region. J. Hydrol. 2009, 374, 71–82. [Google Scholar] [CrossRef]
- Knutti, R.; Sedlacek, J. Robustness and uncertainties in the new CMIP5 climate model projections. Nat. Clim. Chang. 2013, 3, 369–373. [Google Scholar] [CrossRef]
- Wuebbles, D.; Meehl, G.; Hayhoe, K.; Karl, T.R.; Kunkel, K.; Santer, B.; Wehner, M.; Colle, B.; Fischer, E.M.; Fu, R.; et al. CMIP5 climate model analyses: climate extremes in the United States. In Climate Change 2013: The Physical Science Basis. Working Group 1 (WG1) Contribution to the 5th Assessment Report (AR5) of the Intergovernmental Panel on Climate Change (IPCC); Bulletin of the American Meteorological Society; Stocker, T.F., Qin, D., Plattner, G.-K., Tignor, M.M.B., Allen, S.K., Boschung, J., Nauels, A., Xia, Y., Bex, V., Midgley, P.M., Eds.; Cambridge University Press: Cambridge, UK, 2013. [Google Scholar]
- Mohammed, I.N.; Bomblies, A.; Wemple, B.C. The use of CMIP5 data to simulate climate change impacts on flow regime within the Lake Champlain Basin. J. Hydrol. Reg. Stud. 2015, 3, 160–186. [Google Scholar] [CrossRef]
- Nakicenovic, N.; Grübler, A.; Gaffin, S.; Jung, T.-T.; Kram, T.; Morita, T.; Pitcher, H.; Riahi, K.; Schlesinger, M.; Shukla, P.R.; et al. IPCC SRES revisited: a response. Energy Environ. 2003, 14, 187–214. [Google Scholar] [CrossRef]
- Stouffer, R.J.; Broccoli, A.J.; Delworth, T.L.; Dixon, K.W.; Gudgel, R.; Held, I.; Hemler, R.; Knutson, T.; Lee, H.-C.; Schwarzkopf, M.D.; et al. GFDL’s CM2 global coupled climate models. Part IV: Idealized climate response. J. Clim. 2006, 19, 723–740. [Google Scholar] [CrossRef]
- Delworth, T.L.; Broccoli, A.J.; Rosati, A.; Stouffer, R.J.; Balaji, V.; Beesley, J.A.; Cooke, W.F.; Dixon, K.W.; Dunne, J.; Dunne, K.A.; et al. GFDL’s CM2global coupled climate models. Part I: Formulation and simulation characteristics. J. Clim. 2006, 19, 643–674. [Google Scholar] [CrossRef]
- Gordon, C.; Cooper, C.; Senior, C.A.; Banks, H.; Gregory, J.M.; Johns, T.C.; Mitchell, J.F.B.; Wood, R.A. The simulation of SST, sea ice extents and ocean heat transports in a version of the Hadley Centre coupled model without flux adjustments. Clim. Dyn. 2000, 16, 147–168. [Google Scholar] [CrossRef]
- Pope, V.D.; Gallani, M.L.; Rowntree, P.R.; Stratton, R.A. The impact of new physical parameterizations in the Hadley Centre climate model: HadAM3. Clim. Dyn. 2000, 16, 123–146. [Google Scholar] [CrossRef]
- Washington, W.M.; Weatherly, J.W.; Meehl, G.A.; Semtner, A.J., Jr.; Bettge, T.W.; Craig, A.P.; Strand, W.G., Jr.; Arblaster, J.M.; Wayland, V.B.; James, R.; et al. Parallel Climate Model (PCM) control and transient simulations. Clim. Dyn. 2000, 16, 755–774. [Google Scholar] [CrossRef]
- Bhat, K.B.; Haran, M.; Terando, A.; Keller, K. Climate projections using Bayesian model averaging and space-time dependence. J. Agric. Biol. Environ. Stat. 2011, 16, 606–628. [Google Scholar] [CrossRef]
- Wood, A.W.; Leung, L.R.; Sridhar, V.; Lettenmaier, D.P. Hydrologic implications of dynamical and statistical approaches to downscaling climate model outputs. Clim. Chang. 2004, 62, 1–3. [Google Scholar] [CrossRef]
- Nicks, A.D.; Lane, L.J.; Gander, G.A. Weather generator. In USDA-Water Erosion Prediction Project: Hillslope Profile and Watershed Model Documentation; Flanagan, D.C., Nearing, M.A., Eds.; USDA-ARS National Soil Erosion Research Laboratory: West Lafayette, IN, USA, 1995. [Google Scholar]
- Kandel, D.D.; Western, A.W.; Grayson, R.B.; Turral, H.N. Process parameterization and temporal scaling in surface runoff and erosion modeling. Hydrol. Process. 2004, 18, 1423–1446. [Google Scholar] [CrossRef]
- Nash, J.E.; Sutcliffe, J.V. River flow forecasting through conceptual models: Part 1. A discussion of principles. J. Hydrol. 1970, 10, 282–290. [Google Scholar] [CrossRef]
- Willmott, C.J. On validation of models. Phys. Geogr. 1981, 2, 184–194. [Google Scholar]
- Beven, K.J.; Binley, A. The future of distributed hydrological models: model calibration and uncertainty prediction. Hydrol. Process. 1992, 6, 279–298. [Google Scholar] [CrossRef]
- Wang, L.; Cherkauer, K.A.; Flanagan, D.C. The role of cold season process on soil erosion in Great Lakes Region. In Proceedings of the American Society of Agronomy, Crop Science Society of America and Soil Science Society of America (ASA-CSSA-SSSA) International Annual Meeting, Cincinnati, OH, USA, 23 October 2012. [Google Scholar]
- Bosch, N.S.; Evans, M.A.; Scavia, D.; Allan, J.D. Interacting effects of climate change and agricultural BMPs on nutrient runoff. J. Great Lakes Res. 2014, 40, 581–589. [Google Scholar] [CrossRef]
- Cousino, L.K.; Becker, R.H.; Zmijewski, K.A. Modeling the effects of climate change on water, sediment, and nutrient yields from the Maumee River watershed. J. Hydrol. Reg. Stud. 2015, 4, 762–775. [Google Scholar] [CrossRef]
- Verma, S.; Bhattarai, R.; Bosch, N.S.; Markus, M. Climate change impacts on flow, sediments and nutrient export in a Great Lakes watershed using SWAT. Clean Soil Air Water 2015, 11, 1464–1474. [Google Scholar] [CrossRef]
Statistics | Binf * (-) | Dsmax * (-) | Ds * (-) | Ws * (m m−1) | Ksat * (mm h−1) |
---|---|---|---|---|---|
Minimum | 0.12 | 1.02 | 0 | 0.51 | 16.06 |
Maximum | 0.40 | 35.50 | 0.93 | 1 | 29.52 |
Mean | 0.30 | 1.31 | 0.10 | 0.85 | 23.82 |
Variance | 0.01 | 69.56 | 0.04 | 0.02 | 15.88 |
Skewness | −0.50 | 3.05 | 2.14 | −0.65 | −0.21 |
Entire Region | A2 | A1B | B1 | ||||||
---|---|---|---|---|---|---|---|---|---|
Early | Middle | Late | Early | Middle | Late | Early | Middle | Late | |
∆ Prec. (mm year−1) | 20.11 | 63.71 | 47.42 | 20.71 | 25.41 | 18.72 | 19.01 | 1.74 | 30.80 |
% | 2.55 | 8.07 | 6.01 | 2.61 | 3.21 | 2.36 | 2.51 | 0.23 | 4.12 |
∆ Temp. (°C) | 0.85 | 2.39 | 4.34 | 1.47 | 2.76 | 3.52 | 0.68 | 1.57 | 1.94 |
∆Prec. (mm Year−1) | A2 | A1B | B1 | ||||||
---|---|---|---|---|---|---|---|---|---|
Early | Middle | Late | Early | Middle | Late | Early | Middle | Late | |
Crop land | 26.65 | 65.33 | 50.57 | −27.89 | 18.35 | 11.95 | 15.84 | 5.69 | 30.77 |
Forest land | 10.99 | 61.04 | 41.25 | −11.99 | 34.58 | 25.32 | 23.24 | −1.72 | 30.71 |
Grass land | 24.66 | 67.31 | 58.70 | −19.24 | 24.70 | 28.38 | 18.58 | −7.04 | 30.71 |
∆Precipitation (mm Season−1) | Cropland | Forestland | Grassland | ||||||
---|---|---|---|---|---|---|---|---|---|
Early | Middle | Late | Early | Middle | Late | Early | Middle | Late | |
Spring | −9.94 | 45.01 | 96.74 | −2.17 | 19.79 | 71.99 | −2.73 | 5.23 | 14.85 |
Summer | −5.53 | −27.55 | −89.68 | −12.62 | −11.71 | −69.28 | −1.61 | −4.14 | −11.83 |
Fall | 45.14 | 79.3 | 52.75 | 22.53 | 61.85 | 26.23 | 8.08 | 13.61 | 7.89 |
Winter | 21.51 | 28.65 | 36.09 | 8.99 | 22.92 | 33.8 | 4.00 | 6.44 | 7.52 |
Sum | 51.18 | 125.41 | 95.9 | 16.73 | 92.85 | 62.74 | 7.74 | 21.14 | 18.43 |
∆T (°C) | Cropland | Forestland | Grassland | ||||||
Early | Middle | Late | Early | Middle | Late | Early | Middle | Late | |
Spring | 0.75 | 1.83 | 3.67 | 0.76 | 1.89 | 3.53 | 0.72 | 1.81 | 3.74 |
Summer | 1.23 | 2.84 | 5.52 | 1.27 | 2.56 | 5.07 | 1.22 | 2.83 | 5.42 |
Fall | 0.76 | 2.05 | 3.91 | 1.12 | 2.01 | 3.94 | 0.81 | 2.09 | 3.84 |
Winter | 0.60 | 2.87 | 4.42 | 2.56 | 3.09 | 4.56 | 0.73 | 2.84 | 4.43 |
Average | 0.84 | 2.40 | 4.38 | 1.43 | 2.39 | 4.28 | 0.87 | 2.39 | 4.36 |
Entire Region | A2 | A1B | B1 | ||||||
---|---|---|---|---|---|---|---|---|---|
Early | Middle | Late | Early | Middle | Late | Early | Middle | Late | |
∆ET (mm year−1) | 18.29 | 22.76 | 10.75 | 8.10 | 22.30 | 22.78 | 9.15 | 7.14 | 18.17 |
∆SM (mm year−1) | −0.57 | −0.58 | −1.13 | −0.40 | −0.96 | −1.05 | −0.23 | −0.65 | −2.88 |
∆R (mm year−1) | −6.91 | −3.40 | −4.49 | −1.81 | −8.51 | −7.35 | −0.60 | −3.19 | −6.59 |
% | −6.39 | −3.15 | −4.15 | −1.72 | −8.11 | −7.01 | −0.64 | −3.42 | −7.06 |
∆SL (ton ha−1 year−1) | −0.71 | −0.43 | −1.40 | −0.91 | −1.63 | −1.80 | −0.71 | −0.72 | −1.70 |
% | −8.71 | −4.98 | −17.42 | −10.51 | −19.70 | −21.41 | −9.27 | −9.21 | −22.5 |
∆ Runoff (mm Year−1) | A2 | A1B | B1 | ||||||
---|---|---|---|---|---|---|---|---|---|
Early | Middle | Late | Early | Middle | Late | Early | Middle | Late | |
Cropland | −9.26 | −5.26 | −13.33 | −5.20 | −15.40 | −15.30 | −2.01 | −0.84 | −10.99 |
Forestland | −2.88 | 8.15 | 10.00 | 7.21 | 2.10 | 4.67 | 4.01 | 8.26 | 0.62 |
Grassland | −12.86 | −10.13 | −22.74 | −1.65 | −19.18 | −18.31 | −0.14 | 2.64 | −16.47 |
∆ Soil Loss (Ton ha−1 Year−1) | A2 | A1B | B1 | ||||||
Early | Middle | Late | Early | Middle | Late | Early | Middle | Late | |
Cropland | −0.58 | −0.37 | −1.43 | −0.74 | −1.22 | −1.37 | −0.42 | −0.19 | −0.6 |
Forestland | 0.03 | 0.08 | 0.17 | 0.1 | 0.05 | 0.08 | 0.002 | 0.01 | 0.01 |
Grassland | −0.05 | 0.01 | −0.03 | −0.15 | −0.62 | −0.56 | −0.41 | −0.12 | −0.56 |
Runoff (mm Season−1) | Cropland | Forestland | Grassland | ||||||
---|---|---|---|---|---|---|---|---|---|
Early | Middle | Late | Early | Middle | Late | Early | Middle | Late | |
Spring | −17.53 | −9.85 | −13.86 | −4.11 | 4.00 | 11.70 | −3.85 | −3.36 | −6.10 |
Summer | −8.69 | −14.72 | −23.44 | −4.19 | −4.62 | −10.85 | −1.65 | −2.30 | −3.15 |
Fall | 3.57 | 7.15 | 3.00 | 1.72 | 4.75 | 1.76 | 0.55 | 0.98 | 0.38 |
Winter | 5.15 | 7.00 | 9.05 | 2.19 | 8.27 | 12.60 | 0.91 | 1.50 | 1.73 |
Sum | −17.51 | −10.42 | −25.25 | −4.39 | 12.41 | 15.21 | −4.04 | −3.18 | −7.14 |
Soil Loss (Ton ha−1 Season−1) | Cropland | Forestland | Grassland | ||||||
Early | Middle | Late | Early | Middle | Late | Early | Middle | Late | |
Spring | -0.15 | −0.10 | −0.03 | 0.01 | 0.02 | 0.07 | −0.02 | −0.03 | −0.03 |
Summer | −0.30 | −0.49 | −0.67 | −0.01 | −0.02 | −0.03 | −0.03 | −0.03 | −0.04 |
Fall | 0.18 | 0.36 | 0.10 | 0.01 | 0.02 | 0.01 | 0.01 | 0.02 | 0.01 |
Winter | 0.06 | 0.08 | 0.05 | 0.002 | 0.01 | 0.01 | 0.003 | 0.01 | 0.01 |
Sum | −0.21 | −0.15 | −0.55 | 0.012 | 0.03 | 0.06 | -0.037 | −0.03 | −0.05 |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, L.; Cherkauer, K.A.; Flanagan, D.C. Impacts of Climate Change on Soil Erosion in the Great Lakes Region. Water 2018, 10, 715. https://doi.org/10.3390/w10060715
Wang L, Cherkauer KA, Flanagan DC. Impacts of Climate Change on Soil Erosion in the Great Lakes Region. Water. 2018; 10(6):715. https://doi.org/10.3390/w10060715
Chicago/Turabian StyleWang, Lili, Keith A. Cherkauer, and Dennis C. Flanagan. 2018. "Impacts of Climate Change on Soil Erosion in the Great Lakes Region" Water 10, no. 6: 715. https://doi.org/10.3390/w10060715