Deep Learning- and IoT-Based Framework for Rock-Fall Early Warning
<p>Rock-fall early warning framework.</p> "> Figure 2
<p>Rock-fall detection model.</p> "> Figure 3
<p>Deep learning model design.</p> "> Figure 4
<p>The neuron’s main parts.</p> "> Figure 5
<p>Union of non-mutually exclusive probabilities process.</p> "> Figure 6
<p>The mean squared error (MSE) curve.</p> "> Figure 7
<p>The ROC curve for the validation dataset).</p> "> Figure 8
<p>The rock-fall risk probability.</p> "> Figure 9
<p>ALARP threshold triangle.</p> "> Figure 10
<p>Rock-fall risk reduction.</p> ">
Abstract
:1. Introduction
- We propose an IoT-based framework for rock-fall early warning.
- We created a deep learning model to predict the likelihood of rock-fall events.
- We created a detection model-based micro-seismic wave and computer vision.
- We have augmented the accuracy of a prediction model by fusing the detection model with a prediction model.
- We developed a decision-making algorithm.
- We provide a baseline methodology and a prediction accuracy benchmark for future related work.
2. Study Area and Problems
3. Data acquisition
3.1. Data Collection and Preparation
3.2. Rock-Fall Condition Factors
4. Methodology
4.1. Rock-Fall Early Warning Framework Design
4.2. Rock-Fall Detection Model
4.2.1. Rock-Fall Detection-Based Computer Vision
4.2.2. Rock-Fall Detection-Based Micro-Seismic Wave
4.3. Rock-Fall Prediction Model
4.3.1. Deep Learning Model
- i is the ith input neuron;
- j is the jth output neuron;
- n is the number of elements in the ith input vector;
- bj is the bias value (also known as the activation threshold) connected to the jth node.
4.3.2. Training Methods
4.3.3. Model Performance Validation
4.4. Rock-Fall Risk Assessment
4.5. Rock-Fall Prediction Model Augmentation
4.6. Rock-Fall Risk Reduction Process
4.7. Decision-Making Algorithm
Algorithm 1: Figure out the rock-fall risk, identify the risk level, and carry out the rock-fall risk reduction process |
The first step: Gathering information with the IoT layer |
Read rainfall by rain sensors |
Read temperature by temperature sensors |
Read IoT camera video frames |
Read seismic waves by seismic sensor |
The second step: Detection of falling rocks |
in accordance with Equation (1) |
The third step: Determine the rock-fall occurrence probability (P) |
in accordance with deep dearning model |
The fourth step: Compute the total rock-fall risk probability P(j) |
in accordance with Equation (17) |
The fifth step: Classifying the hazard in to three levels: |
When P(Risk) is greater than or equal to (1 × 10−3) |
then hazard is at an unacceptable level. |
When P(Risk) is greater than (1 × 10−6) and less than (1 × 10−3) |
then hazard is at a tolerable level. |
When P(Risk) is less than or equal to (1 × 10−6) |
then hazard is at an acceptable level. |
The sixth step: performing the risk reduction action |
Reducing the risk of rock falls by sounding and lighting warnings |
Turn on the red light + sound when the hazard is at an unacceptable level. |
Turn on the yellow light when the hazard is at a tolerable level. |
Turn on the green light when the hazard is at an acceptable level. |
The seventh step: Return to first step. |
5. Results and Discussion
5.1. Deep Learning Model Validation
5.2. Rock-Fall Risk Assessment Result
5.3. Model Uncertainty Reduction
5.4. Overall Model Accuracy Augmentation
5.5. Rock-Fall Risk Reduction
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Budetta, P. Assessment of rockfall risk along roads. Nat. Hazards Earth Syst. Sci. 2004, 4, 71–81. [Google Scholar] [CrossRef]
- Luciano, P. Quantitative Risk Assessment of Rockfall Hazard in the Amalfi Coastal Road. Available online: https://upcommons.upc.edu/handle/2099.1/4937 (accessed on 1 February 2021).
- Sun, S.-Q.; Li, L.-P.; Li, S.-C.; Zhang, Q.-Q.; Hu, C. Rockfall Hazard Assessment on Wangxia Rock Mass in Wushan (Chongqing, China). Geotech. Geol. Eng. 2017, 35, 1895–1905. [Google Scholar]
- Steiakakis, C.; Partsinevelos, P.; Tripolitsiotis, A.; Agioutantis, Z.; Mertikas, S.; Vlahou, G. Design and System Architecture of the GEOIM Rockfall Monitoring System. In Proceedings of the 5th Interdisciplinary Workshop on Rockfall Protection-RocExs, Lecco, Italy, 29–31 May 2014; RocExs: Lecco, Italy, 2014. [Google Scholar]
- Collins, D.S.; Toya, Y.; Hosseini, Z.; Trifu, C.I. Real Time Detection of Rock Fall Events Using a Microseismic Railway Mon-itoring System; Geohazards: Kingstone, ON, Canada, 2014. [Google Scholar]
- Gracchi, T.; Lotti, A.; Saccorotti, G.; Lombardi, L.; Nocentini, M.; Mugnai, F.; Gigli, G.; Barla, M.; Giorgetti, A.; Antolini, F.; et al. A method for locating rockfall impacts using signals recorded by a microseismic network. Geoenvironmental Disasters 2017, 4, 26. [Google Scholar] [CrossRef]
- Pies, M.; Hajovsky, R. Use of accelerometer sensors to measure the states of retaining steel networks and dynamic barriers. In Proceedings of the 2018 19th International Carpathian Control Conference (ICCC), Szilvasvarad, Hungary, 28–31 May 2018; pp. 416–421. [Google Scholar] [CrossRef]
- Kromer, R.; Walton, G.; Gray, B.; Lato, M.; Group, R. Development and Optimization of an Automated Fixed-Location Time Lapse Photogrammetric Rock Slope Monitoring System. Remote Sens. 2019, 11, 1890. [Google Scholar] [CrossRef]
- Núñez-Andrés, M.A.; Prades-Valls, A.; Matas, G.; Buill, F.; Lantada, N. New Approach for Photogrammetric Rock Slope Premonitory Movements Monitoring. Remote. Sens. 2023, 15, 293. [Google Scholar] [CrossRef]
- Yakar, M.; Ulvi, A.; Yiğit, A.Y.; Alptekin, A. Discontinuity set extraction from 3D point clouds obtained by UAV Photogrammetry in a rockfall site. Surv. Rev. 2023, 55, 392. [Google Scholar] [CrossRef]
- Huntley, D.; Bobrowsky, P.; Macleod, R.; Cocking, R.; Joseph, J.; Rotheram-Clarke, D. Field testing innovative differential geospatial and photogrammetric monitoring technologies in mountainous terrain near Ashcroft, British Columbia, Canada. J. Mt. Sci. 2021, 8, 1. [Google Scholar]
- Noël, F.; Jaboyedoff, M.; Caviezel, A.; Hibert, C.; Bourrier, F.; Malet, J.-P. Rockfall trajectory reconstruction: A flexible method utilizing video footage and high-resolution terrain models. Earth Surf. Dyn. 2022, 10, 1141–1164. [Google Scholar] [CrossRef]
- Fantini, A.; Fiorucci, M.; Martino, S. Rock Falls Impacting Railway Tracks: Detection Analysis through an Artificial Intelligence Camera Prototype. Wirel. Commun. Mob. Comput. 2017, 2017, 9386928. [Google Scholar] [CrossRef]
- Shirzadi, A.; Saro, L.; Joo, O.H.; Chapi, K. A GIS-based logistic regression model in rock-fall susceptibility mapping along a mountainous road: Salavat Abad case study, Kurdistan, Iran. Nat. Hazards 2012, 64, 1639–1656. [Google Scholar] [CrossRef]
- Abedini, M.; Ghasemian, B.; Shirzadi, A.; Bui, D.T. A comparative study of support vector machine and logistic model tree classifiers for shallow landslide susceptibility modeling. Environ. Earth Sci. 2019, 78, 560. [Google Scholar] [CrossRef]
- Dou, J.; Yunus, A.P.; Bui, D.T.; Merghadi, A.; Sahana, M.; Zhu, Z.; Chen, C.-W.; Han, Z.; Pham, B.T. Improved landslide assessment using support vector machine with bagging, boosting, and stacking ensemble machine learning framework in a mountainous watershed, Japan. Landslides 2019, 17, 641–658. [Google Scholar] [CrossRef]
- da Silva, C.C.; de Lima, C.L.; da Silva, A.C.G.; Moreno, G.M.M.; Musah, A.; Aldosery, A.; Dutra, L.; Ambrizzi, T.; Borges, I.V.G.; Tunali, M.; et al. Predição de casos de Dengue, Chikungunya e Zika em Recife, Brasil: Uma abordagem espaço-temporal com base em condições climáticas, notificações de saúde e aprendizado de máquina. Res. Soc. Dev. 2021, 10, e452101220804. [Google Scholar] [CrossRef]
- Abdelmaboud, A.; Abaker, M.; Osman, M.; Alghobiri, M.; Abdelmotlab, A.; Dafaalla, H. Hybrid Early Warning System for Rock-Fall Risks Reduction. Appl. Sci. 2021, 11, 9506. [Google Scholar] [CrossRef]
- Aoun, A.G. Aqabats Shaar and Dele Two Obstacles in the Life Test. 2010. Available online: https://www.okaz.com.sa/article/365122 (accessed on 11 January 2021).
- Asir Transport. Rock-Fall Cause the Hurdles of Shaar and Dhula. 2020. Available online: https://www.spa.gov.sa/2117551 (accessed on 19 February 2021).
- Delonca, A.; Gunzburger, Y.; Verdel, T. Statistical correlation between meteorological and rockfall databases. Nat. Hazards Earth Syst. Sci. 2014, 14, 1953–1964. [Google Scholar] [CrossRef]
- D’Amato, J.; Hantz, D.; Guerin, A.; Jaboyedoff, M.; Baillet, L.; Mariscal, A. Influence of meteorological factors on rockfall occurrence in a middle mountain limestone cliff. Nat. Hazards Earth Syst. Sci. 2016, 16, 719–735. [Google Scholar] [CrossRef]
- Abaker, M.; Abdelmaboud, A.; Osman, M.; Alghobiri, M.; Abdelmotlab, A. A Rock-fall Early Warning System Based on Logistic Regression Model. Intell. Autom. Soft Comput. 2021, 28, 843–856. [Google Scholar] [CrossRef]
- Berti, M.; Martina, M.L.V.; Franceschini, S.; Pignone, S.; Simoni, A.; Pizziolo, M. Probabilistic rainfall thresholds for landslide occurrence using a Bayesian approach. J. Geophys. Res. Space Phys. 2012, 117, F4. [Google Scholar] [CrossRef]
- Shirzadi, A.; Chapi, K.; Shahabi, H.; Solaimani, K.; Kavian, A.; Bin Ahmad, B. Rock fall susceptibility assessment along a mountainous road: An evaluation of bivariate statistic, analytical hierarchy process and frequency ratio. Environ. Earth Sci. 2017, 76, 152. [Google Scholar] [CrossRef]
- Collins, B.D.; Stock, G.M. Rockfall triggering by cyclic thermal stressing of exfoliation fractures. Nat. Geosci. 2016, 9, 395–400. [Google Scholar] [CrossRef]
- Park, J.G.; Lee, C. Bayesian rule-based complex background modeling and foreground detection. Opt. Eng. 2010, 49, 027006. [Google Scholar] [CrossRef]
- Gloria, S.; Duperret, A.; Lawrence, J.A. Micro-seismic precursory cracks prior to rock-fall on coastal chalk cliffs: A case study at Mesnil-Val, Normandie, NW France. Nat. Hazards Earth Syst. Sci. 2009, 9, 1625–1641. [Google Scholar]
- Bu, L.; Du, G.; Hou, Q. Prediction of the Compressive Strength of Recycled Aggregate Concrete Based on Artificial Neural Network. Materials 2021, 14, 3921. [Google Scholar] [CrossRef] [PubMed]
- DeRousseau, M.; Kasprzyk, J.; Srubar, W. Computational design optimization of concrete mixtures: A review. Cem. Concr. Res. 2018, 109, 42–53. [Google Scholar] [CrossRef]
- Amar, M.; Benzerzour, M.; Zentar, R.; Abriak, N.-E. Prediction of the Compressive Strength of Waste-Based Concretes Using Artificial Neural Network. Materials 2022, 15, 7045. [Google Scholar] [CrossRef]
- Ince, R. Prediction of fracture parameters of concrete by Artificial Neural Networks. Eng. Fract. Mech. 2004, 71, 2143–2159. [Google Scholar] [CrossRef]
- Dafaalla, H.; Abaker, M.; Abdelmaboud, A.; Alghobiri, M.; Abdelmotlab, A.; Ahmad, N.; Eldaw, H.; Hasabelrsoul, A. Deep Learning Model for Selecting Suitable Requirements Elicitation Techniques. Appl. Sci. 2022, 12, 9060. [Google Scholar] [CrossRef]
- Kaewfak, K.; Huynh, V.-N.; Ammarapala, V.; Ratisoontorn, N. A Risk Analysis Based on a Two-Stage Model of Fuzzy AHP-DEA for Multimodal Freight Transportation Systems. IEEE Access 2020, 8, 153756–153773. [Google Scholar] [CrossRef]
- Wang, X.; Frattini, P.; Crosta, G.B.; Zhang, L.; Agliardi, F.; Lari, S.; Yang, Z. Uncertainty assessment in quantitative rockfall risk assessment. Landslides 2013, 11, 711–722. [Google Scholar] [CrossRef]
- Abdar, M.; Pourpanah, F.; Hussain, S.; Rezazadegan, D.; Liu, L.; Ghavamzadeh, M.; Fieguth, P.; Cao, X.; Khosravi, A.; Acharya, U.R.; et al. A review of uncertainty quantification in deep learning: Techniques, applications and challenges. Inf. Fusion 2021, 76, 243–297. [Google Scholar] [CrossRef]
- Budetta, P.; Nappi, M. Comparison between qualitative rockfall risk rating systems for a road affected by high traffic intensity. Nat. Hazards Earth Syst. Sci. 2013, 13, 1643. [Google Scholar] [CrossRef]
- Szydłowski, T.; Surmi´nski, K.; Batory, D. Drivers’ Psychomotor Reaction Times Tested with a Test Station Method. Appl. Sci. 2021, 11, 2431. [Google Scholar] [CrossRef]
- Nesticò, A.; He, S.; De Mare, G.; Benintendi, R.; Maselli, G. The ALARP Principle in the Cost-Benefit Analysis for the Acceptability of Investment Risk. Sustainability 2018, 10, 4668. [Google Scholar] [CrossRef]
Type | Factor | Unit | Factor Class |
---|---|---|---|
Topographic | slope angle | degree | (range 20–60) |
Hydrological | rain full | mmh−1 | (range 0–46) |
Weather | temperature variation | °C | (range 0–21) |
Frequency Domain | Frequency Spectrum | R |
---|---|---|
first domain | 100 Hz–1000 Hz | 1.5 ± 0.08 |
second domain | 500 Hz–1000 Hz | 2.7 ± 0.32 |
third domain | 100 Hz–500 Hz | 7.1 ± 0.68 |
Predicted Event | |||
---|---|---|---|
Does Not Occur 0 | Occurs 1 | ||
Actual Event | Does not occur 0 | TN = 304 | FP = 51 |
Occurs 1 | FN = 35 | TP = 222 |
Class | Precision | Recall | F1-Score | Support |
---|---|---|---|---|
Rock Fall (Not occur 0) | 91% | 86% | 88% | 355 |
Rock Fall (Occurs 1) | 81% | 86% | 84% | 275 |
Accuracy | 86% | 612 | ||
Macro avg | 85% | 86% | 86% | 612 |
Parameter | Value |
---|---|
Average daily number of vehicles on the road (NV) | 8325 vehicles |
Average vehicle lengths | 5.4 m |
Brake engagement time | 2 s |
Driver reaction time | 0.4 to 2 s |
Average acceleration | 10 m/s2 |
Frequency Spectrum | The Signal Generation Moments | The Average Spectral Amplitude Ratio R | P(S) Rock-Fall Detection |
---|---|---|---|
500 Hz–1000 Hz | Several hours prior to the rock’s fall | 2.7 ± 0.32 | 0.31–0.39 |
100 Hz–500 Hz | Precede the rock fall by a few moments OR moment of rock fall occurrence is confirmed | 7.1 ± 0.68 | 0.83–1.00 |
The Detection Model | Detection Probability | Probability Value When Occurrence is Confirmed | The Average Probability | Uncertainty-Decreasing Factor (δ) |
---|---|---|---|---|
Micro-seismic | P(S) | 0.93–1.00 | 0.96 | - |
Computer vision | P(V) | 0.94–1.00 | 0.97 | - |
The overall detection models | P(D) | 0.87–1.00 | 0.93 | 0.07 |
Rock-Fall Risk Prediction Model | FP | FN | Accuracy |
---|---|---|---|
Before Augmentation | 51 | 35 | 86% |
After Augmentation | 3.57 | 2.45 | 98.8% |
Rock-Fall Risk Probability | Minimum | Maximum |
---|---|---|
Before Reduction | 7.98 × 10−6 | 1.51 × 10−3 |
After Reduction | 8.57 × 10−9 | 8.21 × 10−7 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Abaker, M.; Dafaalla, H.; Eisa, T.A.E.; Abdelgader, H.; Mohammed, A.; Burhanur, M.; Hasabelrsoul, A.; Alfakey, M.I.; Morsi, M.A. Deep Learning- and IoT-Based Framework for Rock-Fall Early Warning. Appl. Sci. 2023, 13, 9978. https://doi.org/10.3390/app13179978
Abaker M, Dafaalla H, Eisa TAE, Abdelgader H, Mohammed A, Burhanur M, Hasabelrsoul A, Alfakey MI, Morsi MA. Deep Learning- and IoT-Based Framework for Rock-Fall Early Warning. Applied Sciences. 2023; 13(17):9978. https://doi.org/10.3390/app13179978
Chicago/Turabian StyleAbaker, Mohammed, Hatim Dafaalla, Taiseer Abdalla Elfadil Eisa, Heba Abdelgader, Ahmed Mohammed, Mohammed Burhanur, Aiman Hasabelrsoul, Mohammed Ibrahim Alfakey, and Mohammed Abdelghader Morsi. 2023. "Deep Learning- and IoT-Based Framework for Rock-Fall Early Warning" Applied Sciences 13, no. 17: 9978. https://doi.org/10.3390/app13179978
APA StyleAbaker, M., Dafaalla, H., Eisa, T. A. E., Abdelgader, H., Mohammed, A., Burhanur, M., Hasabelrsoul, A., Alfakey, M. I., & Morsi, M. A. (2023). Deep Learning- and IoT-Based Framework for Rock-Fall Early Warning. Applied Sciences, 13(17), 9978. https://doi.org/10.3390/app13179978