Prediction of the Compressive Strength of Recycled Aggregate Concrete Based on Artificial Neural Network
<p>Recycled coarse aggregate content (RCA) production process.</p> "> Figure 2
<p>Natural coarse aggregate (NCA), RCA and river sand.</p> "> Figure 3
<p>Particle size distribution of RCA and NCA.</p> "> Figure 4
<p>Particle size distribution of river sand.</p> "> Figure 5
<p>The mixing process of all components.</p> "> Figure 6
<p>RAC specimen preparation process.</p> "> Figure 7
<p>Cubic specimens.</p> "> Figure 8
<p>Cube compressive strength test.</p> "> Figure 9
<p>Specimen failure crack and failure interface morphology.</p> "> Figure 10
<p>Effect of water–cement ratio on slump (P1).</p> "> Figure 11
<p>Effect of water–cement ratio on slump (P2).</p> "> Figure 12
<p>Compressive strength experiment results of RAC cube specimens (P1).</p> "> Figure 13
<p>Compressive strength experiment results of RAC cube specimens (P2).</p> "> Figure 14
<p>Schematic diagram of biological neuron structure.</p> "> Figure 15
<p>Schematic diagram of the BPNN structure of a multi-layer perceptron.</p> "> Figure 16
<p>Information processing process of a single hidden layer neuron.</p> "> Figure 17
<p>Histogram of variable frequency distribution.{(<b>a</b>) C (Kg/m<sup>3</sup>); (<b>b</b>) S (Kg/m<sup>3</sup>); (<b>c</b>) NCA (Kg/m<sup>3</sup>); (<b>d</b>) RCA (Kg/m<sup>3</sup>); (<b>e</b>) Water (Kg/m<sup>3</sup>); (<b>f</b>) W/C; (<b>g</b>) SR (%); (<b>h</b>) RRCA (%); (<b>i</b>) CS (MPa)}.</p> "> Figure 17 Cont.
<p>Histogram of variable frequency distribution.{(<b>a</b>) C (Kg/m<sup>3</sup>); (<b>b</b>) S (Kg/m<sup>3</sup>); (<b>c</b>) NCA (Kg/m<sup>3</sup>); (<b>d</b>) RCA (Kg/m<sup>3</sup>); (<b>e</b>) Water (Kg/m<sup>3</sup>); (<b>f</b>) W/C; (<b>g</b>) SR (%); (<b>h</b>) RRCA (%); (<b>i</b>) CS (MPa)}.</p> "> Figure 18
<p>RMSE value of BPNN model based on Log-Sigmoid (single hidden layer).</p> "> Figure 19
<p>RMSE value of BPNN model based on Tan-Sigmoid (single hidden layer).</p> "> Figure 20
<p>RMSE value of BPNN model based on Log-Sigmoid (double hidden layers).</p> "> Figure 21
<p>RMSE value of BPNN model based on Tan-Sigmoid (double hidden layers).</p> "> Figure 22
<p>Error changes in the BPNN training process.</p> "> Figure 23
<p>BPNN training status.</p> "> Figure 24
<p>Optimal BPNN structure.</p> "> Figure 25
<p>Comparison between prediction values and test values of RAC compressive strength (training data).</p> "> Figure 26
<p>Comparison between prediction values and test values of RAC compressive strength (test data).</p> "> Figure 27
<p>Comparison between prediction values and test values of RAC compressive strength (all data).</p> "> Figure 28
<p>Single parameter effect on the prediction of RAC compressive strength.</p> ">
Abstract
:1. Introduction
2. Experiment Plan
2.1. Materials
2.2. Design of Mixing Proportion
2.3. Experiment Process
2.4. Experimental Results
3. Strength Prediction Model
3.1. Artificial Neural Network
3.2. Back Propagation Neural Network
3.3. Transfer Function
3.4. Training Algorithm
3.5. Data Standardization
3.6. Model Evaluation Parameters
3.7. Determination of BPNN Structure
4. Discussion
4.1. BPNN Architectures
4.2. BPNN Model Development
5. Results
6. Sensitivity Analysis
7. Conclusions
- (1)
- A total of 88 different mix proportions of RAC were designed, and the effects of different water–cement ratios and replacement rates of recycled aggregate regenerated aggregate on RAC compressive strength were studied, with water–cement ratios of 0.35–0.65, and RRCA of 0–100%. The experimental results show that the performance of RAC produced from recycled aggregate can be comparable to that of ordinary concrete. With reasonable mixing proportion design, the RAC compressive strength was able to reach 63 MPa. Under the same water–cement ratio conditions, the RAC slump decreases with increasing RRCA. In addition, the best RRCA rate is 70%.
- (2)
- A total of 840 BPNN models were developed using a trial-and-error approach, for which the C (kg/m3), S (kg/m3), NCA (kg/m3), RCA (kg/m3), Water (kg/m3) W/C, SR (%), and RRCA (%) were taken as the input parameters. Meanwhile, based on the maximum correlation coefficient R2, the optimal BPNN model (8–12–8–1) was selected to predict the RAC compressive strength. The predicted values and the experimental values exhibited good fitting. In addition, the correlation coefficient between the predicted value and the experimental value was 0.96650, and the RMSE reached 2.42.
- (3)
- The sensitivity analysis shows that, all eight of the selected variables was able to greatly affect the compressive strength of RAC; among them, the cement content was the most influential one with respect to its effect on RAC compressive strength. Its impact factor reached 19.78%, while the impact degrees of the other parameters were in the following order: RCA > NCA > W/C > RRCA > S > W > SR.
8. Limitations
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Tang, Z.; Li, W.; Tam, V.W.; Xue, C. Advanced progress in recycling municipal and construction solid wastes for manufacturing sustainable construction materials. Resour. Conserv. Recycl. 2020, 6, 100036. [Google Scholar] [CrossRef]
- Naderpour, H.; Rafiean, A.H.; Fakharian, P. Compressive strength prediction of environmentally friendly concrete using artificial neural networks. J. Build. Eng. 2018, 16, 213–219. [Google Scholar] [CrossRef]
- Duan, Z.; Kou, S.; Poon, C.S. Prediction of compressive strength of recycled aggregate concrete using artificial neural networks. Constr. Build. Mater. 2013, 40, 1200–1206. [Google Scholar] [CrossRef]
- Buck, A.D. Recycled concrete. Highw. Res. Board 1973, 402, 1–38. [Google Scholar]
- Texas A&M Transportation Institute. Recycling Rubble for Highway Purposes. Public Works 1972, 103, 87–88. [Google Scholar]
- Gonzalález-Fonteboa, B.; Martínez-Abella, F. Concretes with Aggregates from Demolition and Construction Waste and Silica Fume. Materials and Mechanical Properties. Build. Environ. 2008, 43, 429–437. [Google Scholar] [CrossRef]
- Dengg, F.; Zeman, O.; Voit, K.; Bergmeister, K. Fastening application in concrete using recycled tunnel excavation material. Struct. Concr. 2018, 19, 374–386. [Google Scholar] [CrossRef]
- Muñoz-Ruiperez, C.; Rodriguez, A.; Junco, C.; Fiol, F.; Calderon, V. Durability of lightweight concrete made concurrently with waste aggregates and expanded clay. Struct. Concr. 2018, 19, 1309–1317. [Google Scholar] [CrossRef]
- Xiao, J. Recycled Aggregate Concrete; Springer: Berlin/Heidelberg, Germany, 2017; pp. 65–98. [Google Scholar]
- Sonawane, T.R.; Pimplikar, S.S. Use of recycled aggregate concrete. IOSR J. Mech. Civ. Eng. 2013, 52–59. [Google Scholar]
- Limbachiya, M.C.; Leelawat, T.; Dhir, R.K. Use of recycled concrete aggregate in high-strength concrete. Mater. Struct. 2000, 33, 574–580. [Google Scholar] [CrossRef]
- Poon, C.-S.; Chan, D. The use of recycled aggregate in concrete in Hong Kong. Resour. Conserv. Recycl. 2007, 50, 293–305. [Google Scholar] [CrossRef]
- Poon, C.; Kou, S.; Lam, L. Use of recycled aggregates in molded concrete bricks and blocks. Constr. Build. Mater. 2002, 16, 281–289. [Google Scholar] [CrossRef]
- Oikonomou, N. Recycled concrete aggregates. Cem. Concr. Compos. 2005, 27, 315–318. [Google Scholar] [CrossRef]
- Silva, R.; De Brito, J.; Dhir, R. The influence of the use of recycled aggregates on the compressive strength of concrete: A review. Eur. J. Environ. Civ. Eng. 2014, 19, 825–849. [Google Scholar] [CrossRef]
- Pedro, D.; De Brito, J.; Evangelista, L. Performance of concrete made with aggregates recycled from precasting industry waste: In-fluence of the crushing process. Mater. Struct. 2014, 48, 3965–3978. [Google Scholar] [CrossRef]
- Duan, Z.H.; Poon, C.S. Properties of recycled aggregate concrete made with recycled aggregates with different amounts of old adhered mortars. Mater. Des. 2014, 58, 19–29. [Google Scholar] [CrossRef]
- Merlet, J.D.; Pimienta, P. Mechanical and physico-chemical properties of concrete produced with coarse and fine recycled concrete aggregates. In Proceedings of the International Union of Laboratories and Experts in Construction Materials, Systems and Structures, London, UK, October 1993. [Google Scholar]
- Heidari, A.; Hashempour, M.; Tavakoli, D. Using of Backpropagation Neural Network in Estimation of Compressive Strength of Waste Concrete. J. Soft Comput. Civ. Eng. 2017, 1, 54–64. [Google Scholar]
- Tavakoli, D.; Heidari, A.; Pilehrood, S.H. Properties of Concrete made with Waste Clay Brick as Sand Incorporating Nano SiO2. Indian J. Sci. Technol. 2014, 7, 1899–1905. [Google Scholar] [CrossRef]
- Asteris, P.G.; Ashrafian, A.; Rezaie-Balf, M. Prediction of the compressive strength of self-compacting concrete using sur-rogate models. Comput. Concr. 2019, 24, 137–150. [Google Scholar]
- Wang, Y.; Chen, J.; Geng, Y. Testing and analysis of axially loaded normal-strength recycled aggregate concrete filled steel tubular stub columns. Eng. Struct. 2015, 86, 192–212. [Google Scholar] [CrossRef]
- Chandwani, V.; Agrawal, V.; Nagar, R. Applications of artificial neural networks in modeling compressive strength of concrete: A state of the art review. Int. J. Curr. Eng. Sci. Res. 2014, 4, 2949–2956. [Google Scholar]
- González-Taboada, I.; González-Fonteboa, B.; Martínez-Abella, F.; Pérez-Ordóñez, J.L. Prediction of the mechanical properties of structural recycled concrete using multivariable regression and genetic programming. Constr. Build. Mater. 2016, 106, 480–499. [Google Scholar] [CrossRef]
- Younis, K.H.; Pilakoutas, K. Strength prediction model and methods for improving recycled aggregate concrete. Constr. Build. Mater. 2013, 49, 688–701. [Google Scholar] [CrossRef]
- Chandwany, V.; Agrawal, V.; Nagar, R. Modeling slump of ready mix concrete using genetic algorithms assisted training of Artificial Neural Networks. Expert Syst. Appl. 2015, 42, 885–893. [Google Scholar] [CrossRef]
- Wagh, V.M.; Panaskar, D.B.; Muley, A.A.; Mukate, S.V.; Lolage, Y.P.; Aamalawar, M.L. Prediction of groundwater suita-bility for irrigation using artificial neural network model: A case study of Nanded tehsil, Maharashtra, India. Model. Earth Syst. Environ. 2016, 2, 1–10. [Google Scholar] [CrossRef]
- Deshpande, N.; Londhe, S.; Kulkarni, S. Modeling compressive strength of recycled aggregate concrete by Artificial Neural Network, Model Tree and Non-linear Regression. Int. J. Sustain. Built Environ. 2014, 3, 187–198. [Google Scholar] [CrossRef] [Green Version]
- Xiong, C.; Li, Q.; Lu, X. Automated regional seismic damage assessment of buildings using an unmanned aerial vehicle and a convolutional neural network. Autom. Constr. 2020, 109, 102994. [Google Scholar] [CrossRef]
- Lv, Y.; Liu, T.; Ma, J.; Wei, S.; Gao, C. Study on settlement prediction model of deep foundation pit in sand and pebble strata based on grey theory and BP neural network. Arab. J. Geosci. 2020, 13, 1238. [Google Scholar] [CrossRef]
- Asteris, P.G.; Mokos, V.G. Concrete compressive strength using artificial neural networks. Neural Comput. Appl. 2020, 32, 11807–11826. [Google Scholar] [CrossRef]
- Chopra, P.; Sharma, R.K.; Kumar, M. Artificial neural networks for the prediction of compressive strength of concrete. Int. J. Appl. Sci. 2015, 13, 187–204. [Google Scholar]
- Chopra, P.; Sharma, R.K.; Kumar, M. Prediction of Compressive Strength of Concrete Using Artificial Neural Network and Genetic Programming. Adv. Mater. Sci. Eng. 2016, 2016, 7648467. [Google Scholar] [CrossRef] [Green Version]
- Naderpour, H.; Kheyroddin, A.; Amiri, G.G. Prediction of FRP-confined compressive strength of concrete using artificial neural networks. Compos. Struct. 2010, 92, 2817–2829. [Google Scholar] [CrossRef]
- Ling, T.-C. Prediction of density and compressive strength for rubberized concrete blocks. Constr. Build. Mater. 2011, 25, 4303–4306. [Google Scholar] [CrossRef]
- Topçu, I.B.; Sarıdemir, M. Prediction of properties of waste AAC aggregate concrete using artificial neural network. Comput. Mater. Sci. 2007, 41, 117–125. [Google Scholar] [CrossRef]
- Torre, A.; Garcia, F.; Moromi, I.; Espinoza, P.; Acuña, L. Prediction of compression strength of high performance concrete using artificial neural networks. J. Phys. Conf. Ser. 2015, 582, 012010. [Google Scholar] [CrossRef] [Green Version]
- Topçu, I.B.; Sarıdemir, M. Prediction of mechanical properties of recycled aggregate concretes containing silica fume using artificial neural networks and fuzzy logic. Comput. Mater. Sci. 2008, 42, 74–82. [Google Scholar] [CrossRef]
- Khademi, F.; Jamal, S.M.; Deshpande, N.; Londhe, S. Predicting strength of recycled aggregate concrete using Artificial Neural Network, Adaptive Neuro-Fuzzy Inference System and Multiple Linear Regression. Int. J. Sustain. Built Environ. 2016, 5, 355–369. [Google Scholar] [CrossRef] [Green Version]
- Hakim, S.J.S.; Noorzaei, J.; Jaafar, M.S.; Jameel, M.; Mohammadhassani, M. Application of artificial neural networks to predict compressive strength of high strength concrete. Phys. Sci. Int. J. 2011, 6, 975–981. [Google Scholar]
- Behera, M.; Bhattacharyya, S.; Minocha, A.; Deoliya, R.; Maiti, S. Recycled aggregate from C&D waste & its use in concrete—A breakthrough towards sustainability in construction sector: A review. Constr. Build. Mater. 2014, 68, 501–516. [Google Scholar] [CrossRef]
- JGJ52-2006. Standard for Technical Requirements and Test Method of Sand and Crushed Stone (or Gravel) for Ordinary Concrete; China Architecture and Building Press: Beijing, China, 2006. (In Chinese) [Google Scholar]
- Tam, V.W.; Gao, X.F.; Tam, C.M. Microstructural analysis of recycled aggregate concrete produced from two-stage mixing approach. Cem. Concr. Res. 2005, 35, 1195–1203. [Google Scholar] [CrossRef] [Green Version]
- GB/T50081-2002. Standard for Test Method of Mechanical Properties on Ordinary Concrete; China Architecture and Building Press: Beijing, China, 2002. (In Chinese) [Google Scholar]
- Hong Kong Government. Construction Standard: Testing Concrete; Hong Kong Government: Hong Kong, China, 2010. [Google Scholar]
- Fan, C.; Huang, R.; Hwang, H.; Chao, S. Properties of concrete incorporating fine recycled aggregates from crushed con-crete wastes. Constr. Build. Mater. 2016, 112, 708–715. [Google Scholar] [CrossRef]
- Tahar, Z.-E.-A.; Ngo, T.-T.; Kadri, E.H.; Bouvet, A.; Debieb, F.; Aggoun, S. Effect of cement and admixture on the utilization of recycled aggregates in concrete. Constr. Build. Mater. 2017, 149, 91–102. [Google Scholar] [CrossRef]
- Adeli, H. Neural Networks in Civil Engineering: 1989–2000. Comput. Civ. Infrastruct. Eng. 2001, 16, 126–142. [Google Scholar] [CrossRef]
- Bal, L.; Buyle-Bodin, F. Artificial neural network for predicting drying shrinkage of concrete. Constr. Build. Mater. 2013, 38, 248–254. [Google Scholar] [CrossRef]
- Lippmann, R.P. An introduction to computing with neural nets. IEEE ASSP Mag. 1987, 4, 4–22. [Google Scholar] [CrossRef]
- Asteris, P.; Kolovos, K.; Douvika, M.; Roinos, K. Prediction of self-compacting concrete strength using artificial neural networks. Eur. J. Environ. Civ. Eng. 2016, 20, s102–s122. [Google Scholar] [CrossRef]
- Asteris, P.G.; Tsaris, A.K.; Cavaleri, L.; Repapis, C.C.; Papalou, A.; Di Trapani, F.; Karypidis, D.F. Prediction of the fundamental period of infilled RC frame structures using artificial neural networks. Comput. Intell. Neurosci. 2016. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Asteris, P.G.; Roussis, P.C.; Douvika, M.G. Feed-Forward Neural Network Prediction of the Mechanical Properties of Sandcrete Materials. Sensors 2017, 17, 1344. [Google Scholar] [CrossRef] [Green Version]
- Asteris, P.G.; Moropoulou, A.; Skentou, A.D.; Apostolopoulou, M.; Mohebkhah, A.; Cavaleri, L.; Rodrigues, H.; Varum, H. Stochastic Vulnerability Assessment of Masonry Structures: Concepts, Modeling and Restoration Aspects. Appl. Sci. 2019, 9, 243. [Google Scholar] [CrossRef] [Green Version]
- Rumelhart, D.E.; Hinton, G.E.; Williams, R.J. Learning Internal Representations by Error Propagation; California University San Diego, La Jolla Institute for Cognitive Science: San Diego, CA, USA, 1985. [Google Scholar]
- Getahun, M.A.; Shitote, S.M.; Gariy, Z.C.A. Artificial neural network based modelling approach for strength prediction of concrete incorporating agricultural and construction wastes. Constr. Build. Mater. 2018, 190, 517–525. [Google Scholar] [CrossRef]
- Trtnik, G.; Kavčič, F.; Turk, G. Prediction of concrete strength using ultrasonic pulse velocity and artificial neural networks. Ultrasonics 2009, 49, 53–60. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gupta, S. Using Artificial Neural Network to Predict the Compressive Strength of Concrete containing Nano-silica. Civ. Eng. Arch. 2013, 1, 96–102. [Google Scholar] [CrossRef]
- Franceschini, S.; Gandola, E.; Martinoli, M.; Tancioni, L.; Scardi, M. Cascaded neural networks improving fish species pre-diction accuracy: The role of the biotic information. Sci. Rep. 2018, 8, 4581. [Google Scholar] [CrossRef]
- Bartlett, P.L. The sample complexity of pattern classification with neural networks: The size of the weights is more im-portant than the size of the network. IEEE Trans. Inf. Theory 1998, 44, 525–536. [Google Scholar] [CrossRef] [Green Version]
- Feng, J.; Lu, S. Performance Analysis of Various Activation Functions in Artificial Neural Networks. J. Physics: Conf. Ser. 2019, 1237, 22030. [Google Scholar] [CrossRef]
- Lourakis, M.I.A. A Brief Description of the Levenberg-Marquardt Algorithm Implemented by Levmar; Technical Report; Institute of Computer Science, Foundation for Research and Technology: Crete, Greece, 2005. [Google Scholar]
- Delen, D.; Sharda, R.; Bessonov, M. Identifying significant predictors of injury severity in traffic accidents using a series of artificial neural networks. Accid. Anal. Prev. 2006, 38, 434–444. [Google Scholar] [CrossRef] [PubMed]
- Iruansi, O.; Guadagnini, M.; Pilakoutas, K.; Neocleous, K. Predicting the Shear Strength of RC Beams without Stirrups Using Bayesian Neural Network. In Proceedings of the 4th International Workshop on Reliable Engineering Computing, Robust Design—Coping with Hazards, Risk and Uncertainty, Singapore, 3–5 March 2010. [Google Scholar]
- Abellán-García, J. Four-layer perceptron approach for strength prediction of UHPC. Constr. Build. Mater. 2020, 256, 119465. [Google Scholar] [CrossRef]
- Chen, Z. An Overview of Bayesian Methods for Neural Spike Train Analysis. Comput. Intell. Neurosci. 2013, 2013, 251905. [Google Scholar] [CrossRef] [Green Version]
- Giovanis, D.G.; Papadopoulos, V. Spectral representation-based neural network assisted stochastic structural mechanics. Eng. Struct. 2015, 84, 382–394. [Google Scholar] [CrossRef]
- Lamanna, J.; Malgaroli, A.; Cerutti, S.; Signorini, M.G. Detection of Fractal Behavior in Temporal Series of Synaptic Quantal Release Events: A Feasibility Study. Comput. Intell. Neurosci. 2012, 2012, 704673. [Google Scholar] [CrossRef] [Green Version]
- Leondes, C.T. Intelligent Systems: Technology and Applications, Six Volume Set; CRC Press: Boca Raton, USA, 2018. [Google Scholar]
- Chaudhari, G.U.; Mohanty, B. Function Approximation Using Back Propagation Algorithm in Artificial Neural Networks. Ph.D. Thesis, National Institute of Technology, Rourkela, India, 2007. [Google Scholar]
- Ullah, S.; Tanyu, B.F.; Zainab, B. Development of an artificial neural network (ANN)-based model to predict permanent deformation of base course containing reclaimed asphalt pavement (RAP). Road Mater. Pavement Des. 2020, 1–19. [Google Scholar] [CrossRef]
- Milne, L. Feature selection using neural networks with contribution measures. In Proceedings of the AI-Conference, Canberra, Australia, 13–17 November 1995. [Google Scholar]
Composition | Item | Cement (%) |
---|---|---|
Chemicals | SiO2 | 21.4 |
Al2O3 | 5.55 | |
Fe2O3 | 3.46 | |
MgO | 1.86 | |
CaO | 64.0 | |
K2O | 0.54 | |
SO3 | 1.42 | |
Na2O | 0.26 | |
Compounds | C3S | 51.0 |
C2S | 23.1 | |
C3A | 8.85 | |
C4AF | 10.5 |
Density (g/cm3) | Fineness (%) | Standard Thick Water Consumption (%) | Set Time (Min) | Compressive Strength (MPa) | Flexural Strength (MPa) | Specific Surface Area (m2/kg) | |||
---|---|---|---|---|---|---|---|---|---|
Initial Setting | Final Set | 3 d | 28 d | 3 d | 28 d | ||||
3.32 | 0.25 | 26.2 | 155 | 215 | 33.4 | 49.5 | 6.7 | 9.1 | 360 |
Property | NCA | RCA | Sand |
---|---|---|---|
Bulk density (g/m3) | 1.536 | 1.253 | 1.758 |
Apparent density | 2.758 | 2.605 | 2.765 |
Stacked porosity (%) | 46.5 | 43.0 | 38.8 |
Crush index (%) | 11.3 | 19.6 | - |
Clay content (%) | 0.96 | 0.26 | 2.56 |
Water absorption (%) | 0.76 | 4.88 | 0.89 |
Maximum particle size (mm) | 25 | 25 | 5 |
Division | Grouping | C (kg/m3) | S (kg/m3) | NCA (kg/m3) | RCA (kg/m3) | Water (kg/m3) | W/C | SR (%) | RRCA (%) |
---|---|---|---|---|---|---|---|---|---|
P1 | G1 | 350 | 532.2 | 987.2 | 0 | 175 | 0.5 | 35 | 0 |
350 | 532 | 888.4 | 98.7 | 175 | 0.5 | 35 | 10 | ||
350 | 531.7 | 789.7 | 197.4 | 175 | 0.5 | 35 | 20 | ||
350 | 531.7 | 691.0 | 296.1 | 175 | 0.5 | 35 | 30 | ||
350 | 531.6 | 592.3 | 394.8 | 175 | 0.5 | 35 | 40 | ||
350 | 530.8 | 493.6 | 493.6 | 175 | 0.5 | 35 | 50 | ||
350 | 530.9 | 394.8 | 592.3 | 175 | 0.5 | 35 | 60 | ||
350 | 531.6 | 296.1 | 691.0 | 175 | 0.5 | 35 | 70 | ||
350 | 531.3 | 197.4 | 789.7 | 175 | 0.5 | 35 | 80 | ||
350 | 531.2 | 98.7 | 888.4 | 175 | 0.5 | 35 | 90 | ||
350 | 530.2 | 0 | 988.0 | 175 | 0.5 | 35 | 100 | ||
G2 | 350 | 526.2 | 974.8 | 0 | 192.5 | 0.55 | 35 | 0 | |
350 | 525.3 | 877.3 | 97.5 | 192.5 | 0.55 | 35 | 10 | ||
350 | 523.2 | 780.0 | 194.9 | 192.5 | 0.55 | 35 | 20 | ||
350 | 523.1 | 682.3 | 292.4 | 192.5 | 0.55 | 35 | 30 | ||
350 | 523.1 | 584.8 | 389.9 | 192.5 | 0.55 | 35 | 40 | ||
350 | 521.3 | 487.4 | 487.4 | 192.5 | 0.55 | 35 | 50 | ||
350 | 522.3 | 389.9 | 584.8 | 192.5 | 0.55 | 35 | 60 | ||
350 | 522 | 292.4 | 682.3 | 192.5 | 0.55 | 35 | 70 | ||
350 | 522.3 | 194.9 | 779.8 | 192.5 | 0.55 | 35 | 80 | ||
350 | 521.3 | 97.4 | 877.3 | 192.5 | 0.55 | 35 | 90 | ||
350 | 520.3 | 0 | 975 | 192.5 | 0.55 | 35 | 100 | ||
G3 | 350 | 517.8 | 962.2 | 0 | 210 | 0.6 | 35 | 0 | |
350 | 517.5 | 866.0 | 96.2 | 210 | 0.6 | 35 | 10 | ||
350 | 516.3 | 769.7 | 192.4 | 210 | 0.6 | 35 | 20 | ||
350 | 516.2 | 673.5 | 288.6 | 210 | 0.6 | 35 | 30 | ||
350 | 515.9 | 577.3 | 384.8 | 210 | 0.6 | 35 | 40 | ||
350 | 515.8 | 481.1 | 481.1 | 210 | 0.6 | 35 | 50 | ||
350 | 515.4 | 384.8 | 577.3 | 210 | 0.6 | 35 | 60 | ||
350 | 515.3 | 288.6 | 673.5 | 210 | 0.6 | 35 | 70 | ||
350 | 515.6 | 192.4 | 769.7 | 210 | 0.6 | 35 | 80 | ||
350 | 515.2 | 96.2 | 865.9 | 210 | 0.6 | 35 | 90 | ||
350 | 515.2 | 0 | 961.8 | 210 | 0.6 | 35 | 100 | ||
G4 | 350 | 511.2 | 949.5 | 0 | 227.5 | 0.65 | 35 | 0 | |
350 | 510.6 | 855 | 94.5 | 227.5 | 0.65 | 35 | 10 | ||
350 | 510.6 | 759.6 | 189.9 | 227.5 | 0.65 | 35 | 20 | ||
350 | 510.3 | 664.6 | 284.8 | 227.5 | 0.65 | 35 | 30 | ||
350 | 510.3 | 569.7 | 379.8 | 227.5 | 0.65 | 35 | 40 | ||
350 | 509.6 | 474.7 | 474.7 | 227.5 | 0.65 | 35 | 50 | ||
350 | 509.3 | 379.8 | 569.7 | 227.5 | 0.65 | 35 | 60 | ||
350 | 508.9 | 284.8 | 664.6 | 227.5 | 0.65 | 35 | 70 | ||
350 | 508.6 | 189.9 | 759.6 | 227.5 | 0.65 | 35 | 80 | ||
350 | 508.2 | 94.9 | 854.5 | 227.5 | 0.65 | 35 | 90 | ||
350 | 508.3 | 0 | 950 | 227.5 | 0.65 | 35 | 100 | ||
P2 | G5 | 480 | 459.3 | 1070.2 | 0 | 153.6 | 0.32 | 30 | 0 |
480 | 459.2 | 963.2 | 107 | 153.6 | 0.32 | 30 | 10 | ||
480 | 459 | 856.1 | 214.0 | 153.6 | 0.32 | 30 | 20 | ||
480 | 458.8 | 749.1 | 321.0 | 153.6 | 0.32 | 30 | 30 | ||
480 | 458.6 | 642.1 | 428.0 | 153.6 | 0.32 | 30 | 40 | ||
480 | 458.3 | 535.1 | 535.1 | 153.6 | 0.32 | 30 | 50 | ||
480 | 458.6 | 428.0 | 642.1 | 153.6 | 0.32 | 30 | 60 | ||
480 | 455.3 | 321.0 | 749.1 | 153.6 | 0.32 | 30 | 70 | ||
480 | 456.1 | 214.0 | 856.1 | 153.6 | 0.32 | 30 | 80 | ||
480 | 456.6 | 107.0 | 963.1 | 153.6 | 0.32 | 30 | 90 | ||
480 | 456.5 | 0 | 1071.3 | 153.6 | 0.32 | 30 | 100 | ||
G6 | 480 | 452.8 | 1509.2 | 0 | 177.6 | 0.37 | 30 | 0 | |
480 | 452.6 | 1358.3 | 150.9 | 177.6 | 0.37 | 30 | 10 | ||
480 | 452.9 | 1207.3 | 301.8 | 177.6 | 0.37 | 30 | 20 | ||
480 | 451.6 | 1056.4 | 452.7 | 177.6 | 0.37 | 30 | 30 | ||
480 | 451.3 | 905.5 | 603.6 | 177.6 | 0.37 | 30 | 40 | ||
480 | 451.2 | 754.6 | 754.6 | 177.6 | 0.37 | 30 | 50 | ||
480 | 450.5 | 603.6 | 905.5 | 177.6 | 0.37 | 30 | 60 | ||
480 | 450.6 | 452.7 | 1056.4 | 177.6 | 0.37 | 30 | 70 | ||
480 | 450.3 | 301.8 | 1207.3 | 177.6 | 0.37 | 30 | 80 | ||
480 | 450.3 | 150.9 | 1358.2 | 177.6 | 0.37 | 30 | 90 | ||
480 | 450.1 | 0 | 1510 | 177.6 | 0.37 | 30 | 100 | ||
G7 | 480 | 447 | 1042.3 | 0 | 201.6 | 0.42 | 30 | 0 | |
480 | 447.2 | 938.1 | 104.2 | 201.6 | 0.42 | 30 | 10 | ||
480 | 447 | 833.8 | 208.4 | 201.6 | 0.42 | 30 | 20 | ||
480 | 446.9 | 729.6 | 312.6 | 201.6 | 0.42 | 30 | 30 | ||
480 | 446.8 | 625.3 | 416.9 | 201.6 | 0.42 | 30 | 40 | ||
480 | 446.5 | 521.1 | 521.1 | 201.6 | 0.42 | 30 | 50 | ||
480 | 446.5 | 416.9 | 625.3 | 201.6 | 0.42 | 30 | 60 | ||
480 | 446.1 | 312.6 | 729.6 | 201.6 | 0.42 | 30 | 70 | ||
480 | 445.8 | 208.4 | 833.8 | 201.6 | 0.42 | 30 | 80 | ||
480 | 445.3 | 104.2 | 938.0 | 201.6 | 0.42 | 30 | 90 | ||
480 | 445.6 | 0 | 1042 | 201.6 | 0.42 | 30 | 100 | ||
G8 | 480 | 439.5 | 1025.5 | 0 | 230.4 | 0.47 | 30 | 0 | |
480 | 439.2 | 922.9 | 102.6 | 230.4 | 0.47 | 30 | 10 | ||
480 | 439 | 820.4 | 205.1 | 230.4 | 0.47 | 30 | 20 | ||
480 | 438.6 | 717.8 | 307.6 | 230.4 | 0.47 | 30 | 30 | ||
480 | 438.6 | 615.3 | 410.2 | 230.4 | 0.47 | 30 | 40 | ||
480 | 437 | 512.7 | 512.7 | 230.4 | 0.47 | 30 | 50 | ||
480 | 437.6 | 410.2 | 615.3 | 230.4 | 0.47 | 30 | 60 | ||
480 | 437 | 307.6 | 717.8 | 230.4 | 0.47 | 30 | 70 | ||
480 | 436.5 | 205.1 | 820.4 | 230.4 | 0.47 | 30 | 80 | ||
480 | 436.2 | 102.5 | 922.9 | 230.4 | 0.47 | 30 | 90 | ||
480 | 436.2 | 0 | 1026 | 230.4 | 0.47 | 30 | 100 |
Input and Output Parameters | Minimum Value | Maximum | Average | Standard Deviation | Variance |
---|---|---|---|---|---|
C (kg/m3) | 350 | 480 | - | - | - |
S (kg/m3) | 436.2 | 532.2 | 484.1 | 36.6 | 36.9 |
NCA (kg/m3) | 0 | 1509.2 | 532.6 | 351.9 | 353.9 |
RCA (kg/m3) | 0 | 1510 | 532.6 | 351.9 | 354.0 |
Water (kg/m3) | 153.6 | 230.4 | 196 | 25 | 25.1 |
W/C | 0.32 | 0.65 | - | - | |
SR (%) | 30 | 35 | - | - | |
RRCA (%) | 0 | 100 | - | - | |
CS (MPa) | 26 | 63 | 41.3 | 8.7 | 8.7 |
Parameter | Set the Value |
---|---|
Training algorithm | Levenberg–Marquardt Algorithm |
Number of hidden layers | 1 to 2 |
Number of hidden layer neurons | 1–20 |
Epochs | 500 |
Performance evaluation | R2, RMSE |
Transfer function | Log-sigmoid, Tan-sigmoid |
The Sorting | Structure | The Transfer Function | R2 | RMSE |
---|---|---|---|---|
1 | 8–12–8–1 | Log-sigmoid | 0.96650 | 2.42 |
2 | 8–16–5–1 | Log-sigmoid | 0.96236 | 3.56 |
3 | 8–3–5–1 | Tan-sigmoid | 0.95236 | 4.56 |
4 | 8–15–8–1 | Log-sigmoid | 0.95233 | 3.26 |
5 | 8–12–1 | Tan-sigmoid | 0.95016 | 5.24 |
6 | 8–8–6–1 | Tan-sigmoid | 0.95011 | 6.35 |
7 | 8–13–2–1 | Tan-sigmoid | 0.94256 | 2.39 |
8 | 8–2–1 | Log-sigmoid | 0.94026 | 3.56 |
9 | 8–12–9–1 | Log-sigmoid | 0.94002 | 3.65 |
10 | 8–9–9–1 | Log-sigmoid | 0.93999 | 3.2 |
Input Parameters | Output Parameter | |||||||
---|---|---|---|---|---|---|---|---|
C | S | NCA | RCA | W | W/C | SR | RRCA | CS |
0.825 | 0.620 | 0.316 | 1.265 | 0.453 | 0.022 | 0.822 | 0.490 | −0.370 |
0.268 | 0.048 | 1.256 | 0.179 | 0.537 | 0.767 | 1.365 | 0.166 | −0.170 |
0.620 | 0.316 | 0.339 | 0.320 | 0.560 | 0.550 | 0.320 | 0.220 | −0.140 |
1.256 | 0.475 | 0.179 | 0.580 | 0.235 | 0.560 | 0.250 | 0.320 | −0.730 |
0.320 | 0.210 | 0.360 | 0.860 | 0.330 | 0.240 | 0.120 | 0.240 | −0.010 |
0.020 | 0.320 | 0.030 | 0.240 | 0.120 | 0.230 | 0.320 | 0.010 | 0.310 |
0.690 | 0.120 | 0.090 | 0.100 | 0.120 | 0.140 | 0.230 | 0.210 | 0.520 |
0.230 | 0.360 | 0.650 | 0.350 | 0.320 | 0.235 | 0.320 | 0.210 | −0.170 |
0.050 | 0.040 | 0.050 | 0.180 | 0.120 | 0.140 | 0.120 | 0.200 | 0.000 |
0.320 | 0.030 | 0.240 | 0.120 | 0.230 | 0.320 | 0.010 | 0.360 | −0.110 |
0.070 | 0.120 | 0.000 | 0.000 | 0.070 | 0.120 | 0.210 | 0.230 | −0.020 |
0.020 | 0.001 | 0.170 | 0.150 | 0.210 | 0.000 | 0.030 | 0.020 | 0.090 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bu, L.; Du, G.; Hou, Q. Prediction of the Compressive Strength of Recycled Aggregate Concrete Based on Artificial Neural Network. Materials 2021, 14, 3921. https://doi.org/10.3390/ma14143921
Bu L, Du G, Hou Q. Prediction of the Compressive Strength of Recycled Aggregate Concrete Based on Artificial Neural Network. Materials. 2021; 14(14):3921. https://doi.org/10.3390/ma14143921
Chicago/Turabian StyleBu, Liangtao, Guoqiang Du, and Qi Hou. 2021. "Prediction of the Compressive Strength of Recycled Aggregate Concrete Based on Artificial Neural Network" Materials 14, no. 14: 3921. https://doi.org/10.3390/ma14143921
APA StyleBu, L., Du, G., & Hou, Q. (2021). Prediction of the Compressive Strength of Recycled Aggregate Concrete Based on Artificial Neural Network. Materials, 14(14), 3921. https://doi.org/10.3390/ma14143921