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The Sample Complexity of Pattern Classification
with Neural Networks: The Size of the Weights is

More Important than the Size of the Network
Peter L. Bartlett,Member, IEEE

Abstract—Sample complexity results from computational learn-
ing theory, when applied to neural network learning for pat-
tern classification problems, suggest that for good generalization
performance the number of training examples should grow at
least linearly with the number of adjustable parameters in the
network. Results in this paper show that if a large neural
network is used for a pattern classification problem and the
learning algorithm finds a network with small weights that has
small squared error on the training patterns, then the general-
ization performance depends on the size of the weights rather
than the number of weights. For example, consider a two-
layer feedforward network of sigmoid units, in which the sum
of the magnitudes of the weights associated with each unit is
bounded by A and the input dimension is n. We show that
the misclassification probability is no more than a certain error
estimate (that is related to squared error on the training set) plus
A
3 (log n)=m (ignoring log A and log m factors), wherem is

the number of training patterns. This may explain the general-
ization performance of neural networks, particularly when the
number of training examples is considerably smaller than the
number of weights. It also supports heuristics (such as weight
decay and early stopping) that attempt to keep the weights small
during training. The proof techniques appear to be useful for the
analysis of other pattern classifiers: when the input domain is a
totally bounded metric space, we use the same approach to give
upper bounds on misclassification probability for classifiers with
decision boundaries that are far from the training examples.

Index Terms— Computational learning theory, neural net-
works, pattern recognition, scale-sensitive dimensions, weight
decay.

I. INTRODUCTION

NEURAL networks are commonly used as learning sys-
tems to solve pattern classification problems. For these

problems, it is important to establish how many training
examples ensure that the performance of a network on the
training data provides an accurate indication of its performance
on subsequent data. Results from statistical learning theory (for
example, [8], [10], [19], and [40]) give sample size bounds
that are linear in the Vapnik–Chervonenkis (VC) dimension
of the class of functions used by the learning system. (The
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VC dimension is a combinatorial complexity measure that is
typically at least as large as the number of adjustable network
parameters.) These results do not provide a satisfactory expla-
nation of the sample size requirements of neural networks for
pattern classification applications, for several reasons. First,
neural networks often perform successfully with training sets
that are considerably smaller than the number of network
parameters (see, for example, [29]). Second, the VC dimension
of the class of functions computed by a network is sensitive to
small perturbations of the computation unit transfer functions
(to the extent that an arbitrarily small change can make the
VC dimension infinite, see [39]). That this could affect the
generalization performance seems unnatural, and has not been
observed in practice.

In fact, the sample size bounds in terms of VC dimension
are tight in the sense that, for every learning algorithm that
selects hypotheses from some class, there is a probability
distribution and a target function for which, if training data
is chosen independently from the distribution and labeled
according to the target function, the function chosen by the
learning algorithm will misclassify a random example with
probability at least proportional to the VC dimension of the
class divided by the number of training examples. However,
for many neural networks, results in this paper show that
these probability distributions and target functions are such
that learning algorithms, like back propagation, that are used
in applications are unlikely to find a network that accurately
classifies the training data. That is, these algorithms avoid
choosing a network that overfits the data in these cases because
they are not powerful enough to findany good solution.

The VC theory deals with classes of -valued func-
tions. The algorithms it studies need only find a hypothesis
from the class that minimizes the number of mistakes on
the training examples. In contrast, neural networks have real-
valued outputs. When they are used for classification problems,
the sign of the network output is interpreted as the clas-
sification of an input example. Instead of minimizing the
number of misclassifications of the training examples directly,
learning algorithms typically attempt to minimize a smooth
cost function, the total squared error of the (real-valued)
network output over the training set. As well as encouraging
the correct sign of the real-valued network output in response
to a training example, this tends to push the output away
from zero by some margin. Rather than maximizing the
proportion of the training examples that are correctly classified,
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it approximately maximizes the proportion of the training
examples that are “distinctly correct” in this way.

When a learning algorithm maximizes the proportion of
distinctly correct training examples, the misclassification prob-
ability depends not on the VC dimension of the function
class, but on a scale-sensitive version of this dimension
known as the fat-shattering dimension. The first main result
of this paper shows that if an algorithm finds a function
that performs well on the training data (in the sense that
most examples are correctly classified with some margin),
then with high confidence the misclassification probability
is bounded in terms of the fat-shattering dimension and the
number of examples. The second main result gives upper
bounds on the fat-shattering dimension for neural networks in
terms of the network depth and the magnitudes of the network
parameters (and independent of the number of parameters).
Together, these results imply the following sample complexity
bounds for two-layer sigmoid networks. (Computation units
in a sigmoid network calculate an affine combination of their
inputs, composed with a fixed, bounded, Lipschitz function.) A
more precise statement of these results appears in Theorem 28.

Consider a two-layer sigmoid network with an arbitrary
number of hidden units, in which the sum of the magnitudes
of the weights in the output unit is bounded by and
the input space is . If the training examples are gener-
ated independently according to some probability distribution,
and the number of training examples increases roughly as

(ignoring log factors), then with high probability every
network function that classifies a fraction at least
of the training set correctly and with a fixed margin has
misclassification probability no more than .

Consider a two-layer sigmoid network as above, for which
each hidden unit also has the sum of the magnitudes of its
weights bounded by , and the network input patterns lie in

. Then a similar result applies, provided the number
of training examples increases roughly as
(again ignoring log factors).

These results show that, for problems encountered in prac-
tice for which neural networks are well-suited (that is, for
which gradient descent algorithms are likely to find good
parameter values), the magnitude of the parameters may be
more important than the number of parameters. Indeed, the
number of parameters, and hence the VC dimension, of both
function classes described above is unbounded.

The result gives theoretical support for the use of “weight
decay” and “early stopping” (see, for example, [21]), two
heuristic techniques that encourage gradient descent algo-
rithms to produce networks with small weights.

A. Outline of the Paper

The next section gives estimates of the misclassification
probability in terms of the proportion of “distinctly correct”
examples and the fat-shattering dimension. Section III gives
some extensions to this result. Results in that section show
that it is not necessary to specify in advance the margin by
which the examples are distinctly correct. It also gives a lower
bound on the misclassification probability in terms of a related

scale-sensitive dimension, which shows that the upper bound
in Section II is tight to within a log factor for a large family
of function classes.

Section IV gives bounds on the fat-shattering dimension for
a variety of function classes, which imply misclassification
probability estimates for these classes. In particular, Section
IV-A shows that in low-dimensional Euclidean domains, any
classification procedure that finds a decision boundary that
is well separated from the examples will have good gen-
eralization performance, irrespective of the hypothesis class
used by the procedure. Section IV-B studies the fat-shattering
dimension for neural networks, and Section V comments on
the implications of this result for neural network learning
algorithm design. Section VI describes some recent related
work and open problems.

II. BOUNDS ON MISCLASSIFICATION PROBABILITY

We begin with some definitions.
Define the threshold function as

Suppose is a set (the input space), is a real-valued
function defined on , and is a probability distribution on

. (Throughout, we ignore issues of measurability,
and assume that all sets considered are measurable.) Define
the misclassification probability of a hypothesis as the
probability that a random pair is mislabeled,

The training data is a sequence of elements of
that are generated independently according to the

probability distribution . For a training data sequence
of length and a real number

, define the error estimate

This estimate counts the proportion of examples that are not
correctly classified with a margin of.

Let be a class of real-valued functions defined on. For
, a sequence of points from is said

to be -shattered by if there is an
such that, for all there is an

satisfying . Define the fat-shattering
dimension of as the function

-shatters some

The fat-shattering dimension was introduced by Kearns and
Schapire [26].

The following theorem gives a generalization error bound
when the hypothesis makes no mistakes on the training exam-
ples and its value is bounded away from zero. The result is
essentially the main result in [38], where it was observed that
a similar but slightly weaker result follows trivially from the
main result in [2]. The proof of this theorem is very similar to
the proof in [2], which closely followed the proofs of Vapnik



BARTLETT: SAMPLE COMPLEXITY OF PATTERN CLASSIFICATION WITH NEURAL NETWORKS 527

and Chervonenkis [41] and Pollard [35]. In this theorem and in
what follows, we assume that is a set, is a class of real-
valued functions defined on , is a probability distribution
on , , and .

Theorem 1 [38]: Suppose
is chosen by independent draws from . Then with proba-
bility at least , every in with has

where .
The next theorem is one of the two main technical results

of the paper. It gives generalization error bounds when the
hypothesis classifies a significant proportion of the training
examples correctly, and its value is bounded away from zero
for these points. In this case, it may be possible to get a
better generalization error bound by excluding examples on
which the hypothesis takes a value close to zero, even if these
examples are correctly classified.

Theorem 2: Suppose is
chosen by independent draws from. Then with probability
at least , every in has

where .
The idea of using the magnitudes of the values of to

give a more precise estimate of the generalization performance
was first proposed in [40], and was further developed in [11]
and [18]. There it was used only for the case of linear function
classes. Rather than giving bounds on the generalization
error, the results in [40] were restricted to bounds on the
misclassification probability for a fixed test sample, presented
in advance. The problem was further investigated in [37].
That paper gave a proof that Vapnik’s result for the linear
case could be extended to give bounds on misclassification
probability. Theorem 1 generalizes this result to more arbitrary
function classes. In [37] and [38] we also gave a more abstract
result that provides generalization error bounds in terms of
any hypothesis performance estimator (“luckiness function”)
that satisfies two properties (roughly, it must be consistent,
and large values of the function must be unusual). Some
applications are described in [38].

Horváth and Lugosi [23], [33] have also obtained bounds
on misclassification probability in terms of properties of re-
gression functions. These bounds improve on the VC bounds
by using information about the behavior of the true regression
function (conditional expectation of given ). Specifically,
they show that the error of a skeleton-based estimator depends
on certain covering numbers (with respect to an unusual pseu-
dometric) of the class of possible regression functions, rather
than the VC dimension of the corresponding class of Bayes
classifiers. They also give bounds on these covering numbers
in terms of a scale-sensitive dimension (which is closely
related to the fat-shattering dimension of a squashed version of
the function class—see Definition 3 below). However, these
results do not extend to the case when the true regression

function is not in the class of real-valued functions used by
the estimator.

The error estimate is related to Glick’s smoothed error
estimate (see, for example, [12, Ch. 31]), which also takes into
account the value of the real-valued prediction . The key
feature of Glick’s estimate is that it varies smoothly with ,
and hence in many cases provides a low variance (although
biased) estimate of the error.

The proof of Theorem 2 is in two parts. The first lemma
uses an approximation argument, as well as the standard
permutation technique to give sample complexity bounds in
terms of covering numbers of a certain function class re-
lated to the hypothesis class. We then calculate these covering
numbers.

Definition 3: Suppose that is a pseudometric space.
For , a set is an -cover of with respect to
if for all in there is a in with . We define

as the size of the smallest-cover of .
For a class of functions defined on a set and a sequence

, define the pseudometric by

Denote by .
For , define as the piecewise-linear

squashing function

if
if
otherwise.

For a class of functions mapping from a set to , define

Lemma 4: Suppose , is a probability
distribution on , and

is chosen by independent draws from . Then with prob-
ability at least , every in has

The proof uses techniques that go back to Pollard [35] and
Vapnik and Chervonenkis [41], but using an cover as in
[2], rather than the covers used by Pollard.

Proof: Clearly,

Also, if and only if , so we have
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We now relate this probability to a probability involving a
second sample

chosen independently according to. Standard techniques
(see, for example, [41]) show that the probability above is
no more than

(1)

(where the probability is over the double sample ),
provided , and we shall see later that our choice
of always satisfies this inequality. Next, we introduce a
random permutation that swaps elements ofand . Let

be the uniform distribution on the set of permutations
on that swap some corresponding elements

from the first and second half (that is,
), and let denote for

in . We denote the permuted elements ofand as
, and define the permuted vectors, ,

etc., in the obvious way. Then since is chosen according
to a product probability measure, the probability above is not
affected by such a permutation, so (1) is no more than

(2)

For a given , let be a minimal -cover with respect
to of the set . That is, for all in ,
there is a in such that for we have

. For that and , it is clear that

and

Hence, (2) is no more than

where satisfy iff
and iff , and the probability is
over the chosen independently and uniformly on .

Hoeffding’s inequality [22] implies that this is no more than
. Setting this to and

solving for gives the desired result.
The following result of Alonet al. [1] is useful to get bounds

on these covering numbers.
Theorem 5 [1]: Consider a class of functions that map

from to with . Then

provided that

This result, together with a quantization argument, gives
bounds on . We use this approach to prove
Theorem 2.

Proof of Theorem 2:Define the quantization function
as

Define the class of quantized functions.
Since

we have

Let denote the maximum over all
of the size of the largest subset of for which all pairs of
elements are -separated with respect to . It is easy to
see that

and it is well known that

and

(see [27]), hence

Applying Theorem 5 with and gives

provided that , which can be assumed
since the result is trivial otherwise. Substituting into Lemma
4, and observing that gives the
desired result.
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III. D ISCUSSION

Theorems 1 and 2 show that the accuracy of the error
estimate depends on the fat-shattering dimension rather
than the VC dimension. This can lead to large improvements
over the VC bounds; the next section contains examples of
function classes that have infinite VC dimension but small
fat-shattering dimension, and we shall see later in this section
that for many function classes the fat-shattering dimension is
always no more than a constant factor bigger than the VC
dimension. This decrease in estimation error comes at the cost
of a possible increase in approximation error. Specifically, for
a function class it is possible to construct distributions
for which some has small but with high probability
every in has large. However, in many practical
situations this is not relevant. For example, learning algorithms
for neural networks typically minimize squared error, and for
the distributions described above everyhas large squared
error (with high probability). So the distributions for which the
use of the error estimate incurs a large approximation
error are those for which the learning algorithm fails in any
case.

We can obtain a more general result that implies variants of
Theorems 1 and 2. The following result can be proved using
the techniques from the proof of Lemma 4, together with the
proof of the corresponding result in [40] (or the simpler proof
in [3]).

Theorem 6: Suppose , is a
probability distribution on , and

is chosen by independent draws from . Then

Corollary 7: Under the conditions of Theorem 6, and for
all ,

i) and

ii)

iii)

.
Proof: The proofs of i) and ii) are immediate. To see

iii), suppose that , and consider
separately the cases in which and

. In either case, we conclude that

Parts i) and ii) of this corollary give results essentially iden-
tical to Theorems 1 and 2, but with slightly worse constants.

In Theorems 1 and 2, the quantity(the margin by which
hypothesis values are separated from) is specified in advance.
This seems unnatural, since it is a quantity that will be
observed after the examples are seen. It is easy to give a similar
result in which the statement is made uniform over all values
of this quantity. This follows from the following proposition.

Proposition 8: Let be a probability space, and
let

be a set of events satisfying the following conditions:

1) for all and , ;
2) for all and

is measurable; and
3) for all and

Then for ,

Proof:

This gives the following corollary of Theorems 1 and 2.
Corollary 9: Suppose is

chosen by independent draws from .

1) With probability at least , every in and every
in with have

where .
2) With probability at least , every in and every

in have

where .
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Proof: For the first inequality, define as the
set of for which some in has and

where . The result follows from the proposi-
tion with . The second inequality is derived similarly.

Desirable behavior of the fat-shattering dimension
is clearly not necessary for good generalization performance
bounds. It is only the behavior of elements of the hypothesis
class in some neighborhood of the origin that is important.
As the proof shows, the generalization error bound can be
expressed as a function of . While it is possible to
construct function classes for which this complexity measure
is considerably smaller than (see, for example, [23]), the
distinction is apparently not useful for applications.

It is possible to obtain generalization error bounds like
those of Theorems 1 and 2 in terms of other versions of the
fat-shattering dimension.

Definition 10: For a class of real-valued functions de-
fined on and , a sequence of points
from is said to be uniformly -shattered by if there is an

such that, for all there
is an satisfying . Define

uniformly -shatters some

We say that a sequence is uniformly-level-shattered by
if it is uniformly -shattered and will suffice. We denote
the corresponding dimension .

We use the notation , as in [7], since this is a scale-
sensitive version of a dimension introduced by Vapnik in
[40]. The dimension has been used in approximation
theory [31]. These complexity measures are closely related.
Clearly, . If for every real
number and every function in we have
(that is, the class has an adjustable output offset), then

. It is also possible to show (by
quantizing and then applying the pigeonhole principle—the
proof is identical to that of [9, Theorem 5]) that

for constants and . It follows that for a class with an
adjustable output offset

so the bounds of Theorems 1 and 2 can also be expressed in
terms of LfatV . Notice that for all

, so for classes with an adjustable output offset the bounds
of Theorems 1 and 2 are always within log factors of the
corresponding results from the VC theory. For these classes,
Theorem 11 below shows that the upper bounds are nearly
optimal. (However, expressing the upper bounds in terms of

introduces extra constant factors, and does not appear
to be useful for applications.)

Theorem 11:Suppose that is a set, ,
is a class of real-valued functions defined on, ,

is a mapping from to , , and .
Then there is a probability distribution on such that

1) some function in satisfies and
almost surely; but

2) with probability at least over chosen according
to

(3)

The proof makes use of the following lower bound for PAC
learning that is a special case of the main result in [13].

Lemma 12 [13]: If , ,
, , and is a mapping from to

the class of all -valued functions defined
on , then there is a distribution on for which some

has but with probability at
least

(4)

Proof of Theorem 11:Choose so that its marginal dis-
tribution on , , has support on a uniformly -level-
shattered set of cardinality . Then
define as the set of in for which for
all in . Notice that can be chosen so that the conditional
distribution is concentrated on for some in .
Clearly, for any such the corresponding satisfies the
condition of the theorem. Without loss of generality, we can
assume that maps to . Fix . If does not satisfy
(3), then the corresponding mapping from to
does not satisfy (4). The result follows from the lemma.

The standard PAC learning results (see [10] and [40])
show that, if the learning algorithm and error estimates are
constrained to make use of the sample only through the
function that maps from hypotheses to the
proportion of training examples that they misclassify, there
is no distribution-independent error bound any better than

. Theorem 11 shows that if the learning
algorithm also makes use of the sample through the functions

, the bound can be better—as good as ,
ignoring log terms. (In the next section, we study function
classes for which is finite when is
infinite.) Theorem 11 shows that there is no better distribution-
independent error bound if we only have access to the sample
through these functions that the sample induces on.

IV. BOUNDS ON

A. Lipschitz Classes

This section considers classes of functions that are defined
on a metric space and do not vary quickly. It turns out that
for “small” metric spaces, such as low-dimensional euclidean
space, these function classes have small .
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Theorem 13:Let be a totally bounded metric space with
metric . Suppose that is a class of real-valued functions
defined on so that every in satisfies the Lipschitz
condition

Then .
Proof: Any two points in a -shattered set must be

apart. It is well known (see, for example, [27]) that every
-separated set in a totally bounded metric space

has cardinality no more than .
It is possible to use this result to give generalization error

bounds for any binary-valued function class defined on a
sufficiently small metric space, in terms of the number of
points that are misclassified or close to the decision boundary.
For a metric space and a function ,
define as the distance from to the boundary of .

Corollary 14: Suppose that is a totally bounded
metric space with metric and , and define

.

1) With probability at least over chosen ac-
cording to , every measurable -valued function

defined on with and
for all has

2) With probability at least over chosen ac-
cording to , every measurable -valued function

defined on satisfies

or

Proof: Fix . Set

where is the set of measurable -valued functions
defined on . For in , if then

. Also, if ,
the triangle inequality for implies that

So satisfies a Lipschitz condition, with constant .
Theorem 13 implies that . Theorems
1 and 2 give the result.

So if the metric space is small, in the sense that
is small, any classification scheme producing a decision bound-
ary that is far from the training examples and correctly
classifies them (or the majority of them) will generalize
well. In particular, if , . If
the dimension is small, this can give good generalization
error bounds. For example, the “two spirals” problem was
a popular test of the generalization performance of neural

network learning algorithms [28]. In this case,is a bounded
subset of and the nature of the problem means there is
a large margin solution. So the result above shows that any
classifier that gives a margin of at least some fixed value
will have its error decreasing as a constant over. This is
true even if the classifier chooses these functions from a class
with infinite VC dimension.

B. Neural Networks

Neural networks are typically used as real-valued function
classes, and are trained by minimizing squared error on the
training examples,

The following observation shows that this procedure can work
to approximately maximize the minimum value of .

Proposition 15: For a function that maps from a set to
and a sequence of examples from

, if

then

The remainder of this section derives bounds on the fat-
shattering dimension for classes of functions computed by
neural networks. Bounds on the pseudodimension of various
neural network classes have been established (see, for ex-
ample, [8], [19], [25], and [34]), but these are all at least
linear in the number of parameters. (The pseudodimension is
equal to , and hence gives an upper bound
on .) Gurvits and Koiran [17] have obtained an upper
bound on the fat-shattering dimension for two-layer networks
with bounded output weights and hidden units chosen from
a class of binary-valued functions with finite VC dimension.
They obtain the following result for the case of linear threshold
hidden units.

Proposition 16 [17]: Let be the class of functions
defined on for . Let be the class

of two-layer threshold networks with an arbitrary number of
hidden units chosen from and a bound on the output
weights

IN

Then

The following result is the second key technical result in
this paper. It gives a bound on the fat-shattering dimension
for networks with real-valued hidden units (including sigmoid
networks). In the special case of linear threshold functions, it
gives a better bound (for large values of ) than Proposi-
tion 16.
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Theorem 17:Let be a nonempty class of functions that
map from to . For , define the class

of two-layer networks with hidden units chosen fromas

IN

Suppose is such that . Then

for some universal constant.
The proof requires the introduction of two more pseudo-

metrics and covering numbers.
Definition 18: For real-valued functions defined on a set,

define the pseudometric for
by

Similarly, define by

If is a set of functions defined on , denote

by , and similarly for .
The idea of the proof of Theorem 17 is to first derive a

general upper bound on an covering number of the class
, and then apply the following result (which is implicit in the

proof of [6, Theorem 2]) to give a bound on the fat-shattering
dimension.

Lemma 19 [6]: If is a class of -valued functions de-
fined on a set with , then

.
To derive an upper bound on , we start with

the bound of Theorem 5 on the cover of the class of
hidden unit functions. This implies a bound on thecovering
number. Then we use a result on approximation into give
a bound on the covering number of the network class.
This implies an upper bound on the covering number, and
comparing this with the lower bound of Lemma 19 gives
Theorem 17.

Lemma 20: Suppose that is a class of -
valued functions defined on a set. If and

, then

(5)

Proof: Using the same quantization argument as in the
proof of Theorem 2, Theorem 5 shows that

implies that is no
more than the expression on the right-hand side of (5). Since

, this implies the same bound for
.

Now, since for all , it suffices if

Setting and solving for gives the desired
result.

We will make use of the following result on approximation
in Hilbert spaces, which has been attributed to Maurey (see
[4] and [24]).

Lemma 21: Suppose is a Hilbert space and has
for all in . Let be an element from the convex

closure of . Then for all and all , there
are functions such that

The following result uses this approximation lemma to relate
covering numbers of the classesand . This technique

is due to Leeet al. [30].
Lemma 22: For the classes and of Theorem 17,

Proof: Let , where
and is the identically zero function. Then the classis the
convex hull of , scaled by . Fix . With the norm

Lemma 21 shows that, for any in and any there are
functions in for which

If, instead of we choose in a -cover of ,
such that , then the triangle inequality
implies that

It follows that we can construct a-cover of from a -
cover of , by selecting all subsets of the cover of size

. Some will suffice, since if
the lemma is trivially true. Hence

We can now combine this result with Lemmas 19 and 20
to prove the theorem.
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Proof of Theorem 17:From Lemmas 19, 20, and 22, if

with , then

(6)

Since we may assume that , if then
is no more than the expression on

the right of (6). So either , or

Now, for all , , so

provided and . It follows that, for

provided that

It is easy to see that will suffice. That is,

Applying this to inequality (6) with , and replacing
by gives the result.

We can apply these techniques to give bounds on the fat-
shattering dimension of many function classes. In this context,
it is useful to consider the pseudodimension of a function class.
Recall that the pseudodimension of a classcan be defined as

and that this provides an upper bound on for all ,
since is a nonincreasing function. We can use such a
bound for a class , together with Theorem 17, to give bounds
on the fat-shattering dimension of the class of bounded linear
combinations of functions from . However, we can obtain
better bounds using the following result, due to Haussler and
Long [20].

Lemma 23 [20]: Let be a class of functions that take
values in with finite. For any

and any

A simple example of the application of these techniques is to
the class of two-layer neural networks.

Corollary 24: Let be a nonde-
creasing function. Define the class of functions on
as

and define

IN

for . Then for

for some universal constant.
Proof: Given the conditions on , has

(see, for example, [19]). Applying Lemmas 19, 22, and
23, and solving for gives the result.

Similar bounds can be obtained if the first layer function
class is replaced by the class of functions computed by a
multilayer network with a bounded number of parameters, and
computation units with either a threshold transfer function, a
piecewise-polynomial transfer function, or the standard sig-
moid, . Bounds for are
known in these cases (see [8], [16], and [25], respectively).

Composing these functions with a smooth squashing func-
tion does not greatly affect these bounds. For the remain-
der of this section, we fix a squashing function

, and assume that it satisfies the following
Lipschitz condition: for some and all

For a class of real-valued functions, let
. The proof of the following result is trivial.

Proposition 25: For a class of real-valued functions and
for all

1) ; and
2) for all IN and

.

Using this result, we can apply the techniques described
above to obtain bounds on the fat-shattering dimension for
deeper networks.

Let be a nonempty class of -valued func-
tions defined on a set . Let , and for ,
let

IN

with defined as above.
Lemma 26: For any , and , we

have
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Proof: The result is clearly true for . Suppose
that it is true for . Then by Lemma 22 and Proposition 25

The following corollary gives a bound on the fat-shattering
dimension for multilayer sigmoid networks with a bound
on the norm of the parameters in each computational unit.

Corollary 27: Let

Let be the class of functions on defined by

For this class, define as above the classes
of functions computed by a sigmoid network with
layers. Then for

and in particular

for some universal constant.
It is also easy to derive analogous results for radial basis

function networks. In fact, these techniques give bounds
on the fat-shattering dimension for any function class that
contains compositions of elements of a class with finite fat-
shattering dimension with a bounded number of compositions
of bounded-weight linear combinations or scalar Lipschitz
functions.

V. DISCUSSION

Together, Theorem 2 and Corollaries 24 and 27 give the
following result.

Theorem 28:Suppose is a probability distribution on
, with , , and .

1) Let be a nondecreasing function. Define
the class of functions on as

and define

IN

for . Then with probability at least over a
training sample chosen according to , every

in has

for some universal constant.
2) Let satisfy

for all . Let .
Let be the class of functions on defined by

and for , let

IN

for . Then for any fixed depth , with
probability at least over a training sample
chosen according to , every in has

for some constant that depends only on.

Notice that these networks have infinite VC dimension. This
result provides a plausible explanation for the generalization
performance of neural networks: if, in applications, there
are networks with many small weights but small squared
error on the training examples, then the VC dimension (and
hence number of parameters) is irrelevant to the generalization
performance. Instead, the magnitude of the weights in the
network is more important.

These results are not sensitive to the form of the squashing
function . Part 1) of Theorem 28 requires only that it be
nondecreasing and have bounded range, and Part 2) (for deeper
nets) requires that it satisfies a Lipschitz condition. This is in
contrast to the VC-dimension results, which are sensitive to
small changes in the function.

Applying Corollary 9 gives a similar result in which we
can choose after seeing the data, in order to optimize the
bound on . Choosing a small value of corresponds
to examining the behavior of the network on a fine scale, and
leads to a large complexity penalty. A larger value ofgives
a smaller complexity penalty, perhaps with some increase in
the error estimate .

We can also use Proposition 8 to give the following result,
in which we can choose both and (the bound on the
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parameter magnitudes) after seeing the data. Define the class
of two-layer networks with output weights bounded byas

IN

where is the class of hidden unit functions defined in
Theorem 28, Part 1).

Corollary 29: Suppose is a probability distribution on
and . With probability at

least over chosen according to , for every
, , and

(7)

for some universal constant.
The corollary follows from Theorem 28, Part 1), on applying

Proposition 8 twice, with representing and . A similar
corollary of Theorem 28, Part 2) follows in the same way.

This complexity regularization result suggests the use of
an algorithm that chooses anfrom to minimize
the right-hand side of (7), in order to give the best bound
on misclassification probability. This is qualitatively similar
to popular heuristics (such as “weight decay” and “early
stopping”—see, for example, [21]) that attempt to find neural-
network functions that have small error and small weights.
In the weight-decay heuristic, a penalty term involving the
magnitudes of the network weights is added to the cost
function, so that the learning algorithm aims to trade squared
error for weight magnitudes. The early-stopping heuristic
restricts a gradient descent algorithm to take only a small
number of steps in weight space in a direction that reduces the
training sample error. For a fixed step size and small initial
weight values, this ensures that the magnitudes of the weights
cannot be large after training.

One approach to the problem of minimizing squared error
while maintaining small weights is described in [30]. The algo-
rithm analyzed in that paper solves the problem for two-layer
networks with linear threshold hidden units. If these units have
fan-in bounded by a constant, the algorithm runs in polynomial
time. It follows that, if there is a network with small total
squared error on the training examples, this algorithm will
quickly find a network with small misclassification probability.

Results in this paper also have implications for regression
using neural networks. The algorithm described in [30] finds
a two-layer network that estimates a real-valued quantity with
near-minimal squared error. For that algorithm, the estimation
error (the difference between the expected squared error of
the network and the error of the optimal network) is bounded
above by a quantity that increases with the size of the
parameters, but is independent of the number of parameters.
The bound on the fat-shattering dimension (and covering
numbers) given in Corollary 27 immediately imply similar
results (but with a slower rate of convergence) for regression
using deeper networks. Again, the bounds on estimation error
depend on the parameter magnitudes but not on the number
of parameters.

VI. FURTHER WORK

No serious effort has been made to optimize the constants
in the results in this paper. Recent work [36] using a more
direct proof technique gives a log factor improvement on the
estimation rate in Theorem 28. Further improvements might
be possible.

It would also be worthwhile to determine how well the
generalization performance estimates provided by Theorem
28 coincide with the actual performance of neural networks
in pattern classification problems. A preliminary investigation
in [32] for an artificial pattern classification problem reveals
that the relationship between misclassification probability and
the parameter magnitudes is qualitatively very similar to the
estimates given here. It would be interesting to determine if
this is also true in real pattern classification problems.

Related techniques have recently been used [36] to explain
the generalization performance of boosting algorithms [14],
[15], which use composite hypotheses that are convex combi-
nations of hypotheses produced by weak learning algorithms.
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