First Experiments in Structural Biology at the European X-ray Free-Electron Laser
<p>The Rayleigh breakup point can be seen where the stable liquid jet forms discrete droplets. The Rayleigh breakup length, or jet length, for a given solution is related to the jet diameter and the jet speed. Scale bar: 100 <math display="inline"><semantics> <mi mathvariant="sans-serif">μ</mi> </semantics></math>m. Figure originally published in Opt. Express [<a href="#B35-applsci-10-03642" class="html-bibr">35</a>].</p> "> Figure 2
<p>The Single Particles, Clusters, and Biomolecules and Serial Femtosecond Crystallography (SPB/SFX) instrument is divided into three main components: (<b>a</b>) The tunnel containing the SASE1 (self-amplified spontaneous emission) undulator and offset mirrors. The offset mirrors remove very hard X-ray higher harmonic radiation and guide the wanted X-rays onto downstream focusing optics. (<b>b</b>) The X-ray beam then enters the optics hutch, which contains the 1 <math display="inline"><semantics> <mrow> <mi mathvariant="sans-serif">μ</mi> <mi mathvariant="normal">m</mi> </mrow> </semantics></math>-scale KB focusing mirror system. (<b>c</b>) The experiment hutch contains the 100 <math display="inline"><semantics> <mi>nm</mi> </semantics></math>-scale KB focusing mirror system, the upstream interaction region where samples interact with the X-ray beam, AGIPD-1M detector, compound refractive lens (CRL) refocusing system, AGIPD-4M detector, and downstream beam diagnostics.</p> "> Figure 3
<p>Pulsed illumination of the sample interaction region shows how X-ray pulses vaporize the sample, creating voids. Jet speeds of 100, 75, and 50 <math display="inline"><semantics> <mrow> <mi mathvariant="normal">m</mi> <mspace width="0.222222em"/> <msup> <mi mathvariant="normal">s</mi> <mrow> <mo>−</mo> <mn>1</mn> </mrow> </msup> </mrow> </semantics></math> refresh the interaction region before the arrival of the subsequent pulse. It can be seen that the lower limit for 1.1 MHz operation falls between 25 and 50 <math display="inline"><semantics> <mrow> <mi mathvariant="normal">m</mi> <mspace width="0.222222em"/> <msup> <mi mathvariant="normal">s</mi> <mrow> <mo>−</mo> <mn>1</mn> </mrow> </msup> </mrow> </semantics></math>. Figure originally published in Nat. Commun. [<a href="#B50-applsci-10-03642" class="html-bibr">50</a>].</p> "> Figure 4
<p>Graph (<b>a</b>) plots the position of the first pressure front seen in (<b>b</b>) as a function of time. Images (<b>b</b>,<b>c</b>) show still frames of an otherwise stable liquid jet, exploding from the X-ray pulse. Shock waves split into multiple pressure fronts and travel transversely along the liquid jet. Figure originally published in Nat. Phys. [<a href="#B40-applsci-10-03642" class="html-bibr">40</a>].</p> "> Figure 5
<p>Graph (<b>a</b>) and histograms (<b>b</b>,<b>c</b>) suggest a stable sample delivery system with an approximately equal probability of a diffraction event across the pulse train. Graphs (<b>d</b>,<b>e</b>) show data quality metrics as a function of resolution. Figure originally published in Nat. Commun. [<a href="#B50-applsci-10-03642" class="html-bibr">50</a>].</p> "> Figure 6
<p>Image (<b>a</b>) and graph (<b>b</b>) show the length measurements of disulphide bonds per pulse. Both length and standard deviation are similar across all pulses. Histogram (<b>c</b>) highlights the similarities in data between the first and second pulse; these simularities can be extended to subsequent pulses, as shown in (<b>d</b>,<b>e</b>). Figure originally published in Nat. Commun. [<a href="#B51-applsci-10-03642" class="html-bibr">51</a>].</p> "> Figure 7
<p>Number of hits and indexed lattices plotted against pulse number. The decreases in hits at pulses 18, 50, 82, and 114 can be attributed to a systematic artifact in detector operation, which was subsequently corrected. The likelihood of any one pulse hitting a crystal is stochastic in nature, as shown by the relatively even distribution across the pulse train. Figure originally published in Struct. Dyn. [<a href="#B52-applsci-10-03642" class="html-bibr">52</a>]; licensed under a Creative Commons Attribution (CC BY) license.</p> "> Figure 8
<p>Data quality metrics, as determined from each pulse number, show that the structural data are independent of pulse number and that there is no systematic change in data quality across the train. Any section of the train can be utilized for data collection without compromise. Notably, the repetitive dips in data quality were due to known detector behavior and not due to the experiment itself. Figure originally published in Struct. Dyn. [<a href="#B52-applsci-10-03642" class="html-bibr">52</a>]; licensed under a Creative Commons Attribution (CC BY) license.</p> "> Figure 9
<p>Zoomed lysozyme diffraction pattern recorded on the AGIPD-1M detector. Gray-scale pixel intensity is measured in the “high” gain stage. Pixels colored red have been measured in the “medium” gain stage. Figure modified from original publication in Nat. Commun. [<a href="#B56-applsci-10-03642" class="html-bibr">56</a>].</p> "> Figure 10
<p>Photocycle of photoactive yellow protein. The red box highlights a region where previously unseen structural confirmations exist, as determined by spectroscopy. Figure originally published in Nat. Methods [<a href="#B64-applsci-10-03642" class="html-bibr">64</a>].</p> "> Figure 11
<p>Pump–probe timing schematic. Black lines indicate X-ray pulse timing. (<b>a</b>) A schema showing that there are 176 X-ray pulses in each train at 1.1 MHz, with a 99 <math display="inline"><semantics> <mi>ms</mi> </semantics></math> gap between trains. Blue lines indicate the laser probe timing relative to the X-ray probe arrival. (<b>b</b>) The <math display="inline"><semantics> <mrow> <mo>Δ</mo> <mi>t</mi> </mrow> </semantics></math> schema at 1.1 MHz. (<b>c</b>) The 0.5 MHz timing schema. The red box indicates that the length of the pump laser duration overlaps with three X-ray pulses before leaving the 5.33 <math display="inline"><semantics> <mi>us</mi> </semantics></math> X-ray pulse unilluminated. Figure originally published in Nat. Methods [<a href="#B64-applsci-10-03642" class="html-bibr">64</a>].</p> "> Figure 12
<p>A Time series of the chromophore binding region of photoactive yellow protein (PYP) between 3 and 100 <math display="inline"><semantics> <mi>ps</mi> </semantics></math>. A difference electron density map is shown in red (−3<math display="inline"><semantics> <mi>σ</mi> </semantics></math> contour level) and blue (+3<math display="inline"><semantics> <mi>σ</mi> </semantics></math> contour level). Images (<b>a</b>–<b>e</b>) show a “front” view, images (<b>f</b>–<b>j</b>) show a side view. Arrows highlight regions of displacement. Figure originally published in Nat. Methods [<a href="#B64-applsci-10-03642" class="html-bibr">64</a>].</p> ">
Abstract
:1. Structural Biology at XFEL Sources
1.1. X-ray Sources and Crystallography
1.2. Free Electron Lasers (FELs)
1.3. Structural Biology Experiments at XFEL Sources
1.4. The European XFEL (EuXFEL)
1.5. Diffraction before Destruction
1.6. First User Experiments at the EuXFEL
1.7. Pulse-by-Pulse Analysis within the Pulse Train
1.8. Membrane Protein Serial Crystallography at MHz Rates
1.9. Time-Resolved Serial Crystallography at MHz Rates
2. A More Flexible MHz, Serial Crystallography Experiment
Mixing Experiments at MHz Pulse Rates
3. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Watson, J.D.; Crick, F.H. Molecular structure of nucleic acids. Nature 1953, 171, 737–738. [Google Scholar] [CrossRef]
- Franklin, R.E.; Gosling, R.G. Evidence for 2-chain helix in crystalline structure of sodium deoxyribonucleate. Nature 1953, 172, 156–157. [Google Scholar] [CrossRef] [PubMed]
- Helliwell, J.R.; Mitchell, E.P. Synchrotron radiation macromolecular crystallography: Science and spin-offs. IUCrJ 2015, 2, 283–291. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rosenbaum, G.; Holmes, K.C.; Witz, J. Synchrotron radiation as a source for X-ray diffraction. Nature 1971, 230, 434–437. [Google Scholar] [CrossRef]
- Phillips, J.C.; Wlodawer, A.; Yevitz, M.M.; Hodgson, K.O. Applications of synchrotron radiation to protein crystallography: Preliminary results. Proc. Natl. Acad. Sci. USA 1976, 73, 128–132. [Google Scholar] [CrossRef] [Green Version]
- Hendrickson, W.A. Anomalous diffraction in crystallographic phase evaluation. Q. Rev. Biophys. 2014, 47, 49–93. [Google Scholar] [CrossRef] [Green Version]
- Hendrickson, W.A. Analysis of protein structure from diffraction measurement at multiple wavelengths. Trans. Am. Crystallogr. Assoc. 1985, 21, 11–21. [Google Scholar]
- Kahn, R.; Fourme, R.; Bosshard, R.; Chiadmi, M.; Risler, J.; Dideberg, O.; Wery, J. Crystal structure study of Opsanus tau parvalbumin by multiwavelength anomalous diffraction. FEBS Lett. 1985, 179, 133–137. [Google Scholar] [CrossRef] [Green Version]
- Bösecke, P.; Diat, O.; Rasmussen, B. High-brilliance Beamline at the European Synchrotron Radiation Facilitya. Rev. Sci. Instrum. 1995, 66, 1636–1638. [Google Scholar] [CrossRef]
- Cork, C.; Padmore, H.; McDermott, G.; Hung, L.W.; Henderson, K.; Robinson, A.; Earnest, T. The macromolecular crystallography facility at the Advanced Light Source. Synchrotron Radiat. News 1998, 11, 18–25. [Google Scholar] [CrossRef] [Green Version]
- Hirata, K.; Kawano, Y.; Ueno, G.; Hashimoto, K.; Murakami, H.; Hasegawa, K.; Hikima, T.; Kumasaka, T.; Yamamoto, M. Achievement of protein micro-crystallography at SPring-8 beamline BL32XU. J. Phys. Conf. Ser. 2013, 425, 012002. [Google Scholar] [CrossRef] [Green Version]
- Burkhardt, A.; Pakendorf, T.; Reime, B.; Meyer, J.; Fischer, P.; Stübe, N.; Panneerselvam, S.; Lorbeer, O.; Stachnik, K.; Warmer, M.; et al. Status of the crystallography beamlines at PETRA III. Eur. Phys. J. Plus 2016, 131, 56. [Google Scholar] [CrossRef] [Green Version]
- Altarelli, M. The European X-ray free-electron laser facility in Hamburg. Nucl. Instrum. Methods Phys. Res. Sect. B Beam Interact. Mater. Atoms 2011, 269, 2845–2849. [Google Scholar] [CrossRef]
- Blundell, T.L. Structure-based drug design. Nature 1996, 384, 23. [Google Scholar]
- Anderson, A.C. The Process of Structure-Based Drug Design. Chem. Biol. 2003, 10, 787–797. [Google Scholar] [CrossRef] [Green Version]
- Spence, J.C. X-ray lasers for structure and dynamics in biology. IUCrJ 2018, 5, 236. [Google Scholar] [CrossRef] [Green Version]
- Kim, K.J. An analysis of self-amplified spontaneous emission. Nucl. Instrum. Methods Phys. Res. Sect. A Accel. Spectrom. Detect. Assoc. Equip. 1986, 250, 396–403. [Google Scholar] [CrossRef] [Green Version]
- Chapman, H.N.; Caleman, C.; Timneanu, N. Diffraction before destruction. Philos. Trans. R. Soc. B Biol. Sci. 2014, 369, 20130313. [Google Scholar] [CrossRef] [Green Version]
- Schoenlein, R.; Chattopadhyay, S.; Chong, H.; Glover, T.; Heimann, P.; Shank, C.; Zholents, A.; Zolotorev, M. Generation of femtosecond pulses of synchrotron radiation. Science 2000, 287, 2237–2240. [Google Scholar] [CrossRef] [Green Version]
- Owen, R.L.; Juanhuix, J.; Fuchs, M. Current advances in synchrotron radiation instrumentation for MX experiments. Arch. Biochem. Biophys. 2016, 602, 21–31. [Google Scholar] [CrossRef] [Green Version]
- Chapman, H.N.; Fromme, P.; Barty, A.; White, T.A.; Kirian, R.A.; Aquila, A.; Hunter, M.S.; Schulz, J.; DePonte, D.P.; Weierstall, U.; et al. Femtosecond X-ray protein nanocrystallography. Nature 2011, 470, 73–77. [Google Scholar] [CrossRef] [PubMed]
- Boutet, S.; Lomb, L.; Williams, G.J.; Barends, T.R.; Aquila, A.; Doak, R.B.; Weierstall, U.; DePonte, D.P.; Steinbrener, J.; Shoeman, R.L.; et al. High-resolution protein structure determination by serial femtosecond crystallography. Science 2012, 337, 362–364. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- White, T.A.; Kirian, R.A.; Martin, A.V.; Aquila, A.; Nass, K.; Barty, A.; Chapman, H.N. CrystFEL: A software suite for snapshot serial crystallography. J. Appl. Crystallogr. 2012, 45, 335–341. [Google Scholar] [CrossRef] [Green Version]
- Gevorkov, Y.; Barty, A.; Brehm, W.; White, T.; Tolstikova, A.; Wiedorn, M.O.; Meents, A.; Grigat, R.-R.; Chapman, H.N.; Yefanov, O. pinkIndexer—A universal indexer for pink-beam X-ray and electron diffraction snapshots. Acta Crystallogr. Sect. A Found. Adv. 2020, 76, 121–131. [Google Scholar] [CrossRef] [PubMed]
- Stellato, F.; Oberthür, D.; Liang, M.; Bean, R.; Gati, C.; Yefanov, O.; Barty, A.; Burkhardt, A.; Fischer, P.; Galli, L.; et al. Room-temperature macromolecular serial crystallography using synchrotron radiation. Int. Union Crystallogr. 2014, 1, 204–212. [Google Scholar] [CrossRef]
- Gati, C.; Oberthuer, D.; Yefanov, O.; Bunker, R.D.; Stellato, F.; Chiu, E.; Yeh, S.M.; Aquila, A.; Basu, S.; Bean, R.; et al. Atomic structure of granulin determined from native nanocrystalline granulovirus using an X-ray free-electron laser. Proc. Natl. Acad. Sci. USA 2017, 114, 2247–2252. [Google Scholar] [CrossRef] [Green Version]
- Holton, J.M.; Frankel, K.A. The minimum crystal size needed for a complete diffraction data set. Acta Crystallogr. Sect. D Biol. Crystallogr. 2010, 66, 393–408. [Google Scholar] [CrossRef] [Green Version]
- Snell, E.H.; Bellamy, H.D.; Borgstahl, G.E. Macromolecular crystal quality. Methods Enzymol. 2003, 368, 268–288. [Google Scholar]
- Boggon, T.; Helliwell, J.; Judge, R.A.; Olczak, A.; Siddons, D.; Snell, E.; Stojanoff, V. Synchrotron X-ray reciprocal-space mapping, topography and diffraction resolution studies of macromolecular crystal quality. Acta Crystallogr. Sect. D Biol. Crystallogr. 2000, 56, 868–880. [Google Scholar] [CrossRef]
- Chayen, N.E.; Saridakis, E. Protein crystallization: From purified protein to diffraction-quality crystal. Nat. Methods 2008, 5, 147. [Google Scholar] [CrossRef]
- Chayen, N.; Boggon, T.; Cassetta, A.; Deacon, A.; Gleichmann, T.; Habash, J.; Harrop, S.; Helliwell, J.; Nieh, Y.; Peterson, M.; et al. Trends and challenges in experimental macromolecular crystallography. Q. Rev. Biophys. 1996, 29, 227–278. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- McPherson, A.; Gavira, J.A. Introduction to protein crystallization. Acta Crystallogr. Sect. F Struct. Biol. Commun. 2014, 70, 2–20. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Carpenter, E.P.; Beis, K.; Cameron, A.D.; Iwata, S. Overcoming the challenges of membrane protein crystallography. Curr. Opin. Struct. Biol. 2008, 18, 581–586. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Schlichting, I. Serial femtosecond crystallography: The first five years. IUCrJ 2015, 2, 246–255. [Google Scholar] [CrossRef] [Green Version]
- Grünbein, M.L.; Shoeman, R.L.; Doak, R.B. Velocimetry of fast microscopic liquid jets by nanosecond dual-pulse laser illumination for megahertz X-ray free-electron lasers. Opt. Express 2018, 26, 7190–7203. [Google Scholar] [CrossRef]
- Rayleigh, L. On the capillary phenomena of jets. Proc. R. Soc. Lond. 1879, 29, 71–97. [Google Scholar]
- Inguva, V.; Graceffa, R.; Schulz, J.; Bilsel, O.; Perot, B.J. Creating round focused micro-jets from rectangular nozzles. J. Mech. Sci. Technol. 2019, 33, 4281–4289. [Google Scholar] [CrossRef]
- Weierstall, U. Liquid sample delivery techniques for serial femtosecond crystallography. Philos. Trans. R. Soc. B Biol. Sci. 2014, 369, 20130337. [Google Scholar] [CrossRef] [Green Version]
- Steinke, I.; Walther, M.; Lehmkühler, F.; Wochner, P.; Valerio, J.; Mager, R.; Schroer, M.A.; Lee, S.; Roseker, W.; Jain, A.; et al. A liquid jet setup for X-ray scattering experiments on complex liquids at free-electron laser sources. Rev. Sci. Instrum. 2016, 87, 063905. [Google Scholar] [CrossRef] [Green Version]
- Stan, C.A.; Milathianaki, D.; Laksmono, H.; Sierra, R.G.; McQueen, T.A.; Messerschmidt, M.; Williams, G.J.; Koglin, J.E.; Lane, T.J.; Hayes, M.J.; et al. Liquid explosions induced by X-ray laser pulses. Nat. Phys. 2016, 12, 966–971. [Google Scholar] [CrossRef]
- Chavas, L.; Gumprecht, L.; Chapman, H. Possibilities for serial femtosecond crystallography sample delivery at future light sources. Struct. Dyn. 2015, 2, 041709. [Google Scholar] [CrossRef] [PubMed]
- Altarelli, M.; Brinkmann, R.; Chergui, M.; Decking, W.; Dobson, B.; Düsterer, S.; Grübel, G.; Graeff, W.; Graafsma, H.; Hajdu, J.; et al. The European X-ray Free-Electron Laser Technical Design Report. DESY 2006, 97, 4. [Google Scholar]
- Tschentscher, T.; Bressler, C.; Grünert, J.; Madsen, A.; Mancuso, A.; Meyer, M.; Scherz, A.; Sinn, H.; Zastrau, U. Photon beam transport and scientific instruments at the European XFEL. Appl. Sci. 2017, 7, 592. [Google Scholar] [CrossRef] [Green Version]
- Mancuso, A.P.; Aquila, A.; Batchelor, L.; Bean, R.J.; Bielecki, J.; Borchers, G.; Doerner, K.; Giewekemeyer, K.; Graceffa, R.; Kelsey, O.D.; et al. The Single Particles, Clusters and Biomolecules and Serial Femtosecond Crystallography instrument of the European XFEL: Initial installation. J. Synchrotron Radiat. 2019, 26, 660–676. [Google Scholar] [CrossRef] [PubMed]
- Dunne, M. LCLS Strategic Facility Development Plan; SLAC National Accelerator Laboratory: Menlo Park, CA, USA, 2017; p. 55. [Google Scholar]
- Sato, T.; LeTrun, R.; Kirkwood, H.; Liu, J.; Vagovic, P.; Mills, G.; Kim, Y.; Takem, C.; Planas, M.; Emons, M.; et al. Femtosecond timing synchronisation at megahertzrepetition rates for an X-ray Free-Electron Laser. Optica 2020. [Google Scholar] [CrossRef]
- Henrich, B.; Becker, J.; Dinapoli, R.; Goettlicher, P.; Graafsma, H.; Hirsemann, H.; Klanner, R.; Krueger, H.; Mazzocco, R.; Mozzanica, A.; et al. The adaptive gain integrating pixel detector AGIPD a detector for the European XFEL. Nucl. Instrum. Methods Phys. Res. Sect. A Accel. Spectrom. Detect. Assoc. Equip. 2011, 633, S11–S14. [Google Scholar] [CrossRef]
- Allahgholi, A.; Becker, J.; Delfs, A.; Dinapoli, R.; Goettlicher, P.; Greiffenberg, D.; Henrich, B.; Hirsemann, H.; Kuhn, M.; Klanner, R.; et al. The Adaptive Gain Integrating Pixel Detector at the European XFEL. J. Synchrotron Radiat. 2019, 26, 74–82. [Google Scholar] [CrossRef] [Green Version]
- DePonte, D.; Weierstall, U.; Schmidt, K.; Warner, J.; Starodub, D.; Spence, J.; Doak, R. Gas dynamic virtual nozzle for generation of microscopic droplet streams. J. Phys. D Appl.Phys. 2008, 41, 195505. [Google Scholar] [CrossRef] [Green Version]
- Wiedorn, M.O.; Oberthür, D.; Bean, R.; Schubert, R.; Werner, N.; Abbey, B.; Aepfelbacher, M.; Adriano, L.; Allahgholi, A.; Al-Qudami, N.; et al. Megahertz serial crystallography. Nat. Commun. 2018, 9, 4025. [Google Scholar] [CrossRef] [Green Version]
- Grünbein, M.L.; Bielecki, J.; Gorel, A.; Stricker, M.; Bean, R.; Cammarata, M.; Dörner, K.; Fröhlich, L.; Hartmann, E.; Hauf, S.; et al. Megahertz data collection from protein microcrystals at an X-ray free-electron laser. Nat. Commun. 2018, 9, 3487. [Google Scholar] [CrossRef]
- Yefanov, O.; Oberthür, D.; Bean, R.; Wiedorn, M.O.; Knoska, J.; Pena, G.; Awel, S.; Gumprecht, L.; Domaracky, M.; Sarrou, I.; et al. Evaluation of serial crystallographic structure determination within megahertz pulse trains. Struct. Dyn. 2019, 6, 064702. [Google Scholar] [CrossRef] [PubMed]
- Weierstall, U.; James, D.; Wang, C.; White, T.A.; Wang, D.; Liu, W.; Spence, J.C.; Doak, R.B.; Nelson, G.; Fromme, P.; et al. Lipidic cubic phase injector facilitates membrane protein serial femtosecond crystallography. Nat. Commun. 2014, 5, 1–6. [Google Scholar] [CrossRef] [PubMed]
- Fromme, R.; Ishchenko, A.; Metz, M.; Chowdhury, S.R.; Basu, S.; Boutet, S.; Fromme, P.; White, T.A.; Barty, A.; Spence, J.C.; et al. Serial femtosecond crystallography of soluble proteins in lipidic cubic phase. IUCrJ 2015, 2, 545–551. [Google Scholar] [CrossRef] [Green Version]
- Kupitz, C.; Basu, S.; Grotjohann, I.; Fromme, R.; Zatsepin, N.A.; Rendek, K.N.; Hunter, M.S.; Shoeman, R.L.; White, T.A.; Wang, D.; et al. Serial time-resolved crystallography of photosystem II using a femtosecond X-ray laser. Nature 2014, 513, 261–265. [Google Scholar] [CrossRef]
- Gisriel, C.; Coe, J.; Letrun, R.; Yefanov, O.M.; Luna-Chavez, C.; Stander, N.E.; Lisova, S.; Mariani, V.; Kuhn, M.; Aplin, S.; et al. Membrane protein megahertz crystallography at the European XFEL. Nat. Commun. 2019, 10, 1–11. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bénas, P.; Auzeil, N.; Legrand, L.; Brachet, F.; Regazzetti, A.; Riès-Kautt, M. Weak protein–cationic co-ion interactions addressed by X-ray crystallography and mass spectrometry. Acta Crystallogr. Sect. D 2014, 70, 2217–2231. [Google Scholar] [CrossRef] [PubMed]
- Rossmanith, E. Concerning intensity profiles. Acta Crystallogr. Sect. A Found. Crystallogr. 2002, 58, 12–20. [Google Scholar] [CrossRef] [Green Version]
- Jordan, P.; Fromme, P.; Witt, H.T.; Klukas, O.; Saenger, W.; Krauß, N. Three-dimensional structure of cyanobacterial photosystem I at 2.5 Å resolution. Nature 2001, 411, 909. [Google Scholar] [CrossRef]
- Szyperski, T. Room Temperature X-ray Crystallography Reveals Conformational Heterogeneity of Engineered Proteins. Structure 2017, 25, 691–692. [Google Scholar] [CrossRef]
- Weinert, T.; Olieric, N.; Cheng, R.; Brünle, S.; James, D.; Ozerov, D.; Gashi, D.; Vera, L.; Marsh, M.; Jaeger, K.; et al. Serial millisecond crystallography for routine room-temperature structure determination at synchrotrons. Nat. Commun. 2017, 8, 542. [Google Scholar] [CrossRef]
- Glownia, J.M.; Cryan, J.; Andreasson, J.; Belkacem, A.; Berrah, N.; Blaga, C.; Bostedt, C.; Bozek, J.; DiMauro, L.; Fang, L.; et al. Time-resolved pump-probe experiments at the LCLS. Opt. Express 2010, 18, 17620–17630. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kubo, M.; Nango, E.; Tono, K.; Kimura, T.; Owada, S.; Song, C.; Mafuné, F.; Miyajima, K.; Takeda, Y.; Kohno, J.Y.; et al. Nanosecond pump–probe device for time-resolved serial femtosecond crystallography developed at SACLA. J. Synchrotron Radiat. 2017, 24, 1086–1091. [Google Scholar] [CrossRef] [PubMed]
- Pandey, S.; Bean, R.; Sato, T.; Poudyal, I.; Bielecki, J.; Villarreal, J.C.; Yefanov, O.; Mariani, V.; White, T.A.; Kupitz, C.; et al. Time-resolved serial femtosecond crystallography at the European XFEL. Nat. Methods 2020, 17, 73–78. [Google Scholar] [CrossRef] [PubMed]
- Barends, T.R.; Foucar, L.; Ardevol, A.; Nass, K.; Aquila, A.; Botha, S.; Doak, R.B.; Falahati, K.; Hartmann, E.; Hilpert, M.; et al. Direct observation of ultrafast collective motions in CO myoglobin upon ligand dissociation. Science 2015, 350, 445–450. [Google Scholar] [CrossRef]
- Geremia, S.; Campagnolo, M.; Demitri, N.; Johnson, L.N. Simulation of Diffusion Time of Small Molecules in Protein Crystals. Structure 2006, 14, 393–400. [Google Scholar] [CrossRef] [Green Version]
- Schmidt, M. Mix and inject: Reaction initiation by diffusion for time-resolved macromolecular crystallography. Adv. Condens. Matter Phys. 2013, 2013, 167276. [Google Scholar] [CrossRef] [Green Version]
- Stagno, J.; Liu, Y.; Bhandari, Y.; Conrad, C.; Panja, S.; Swain, M.; Fan, L.; Nelson, G.; Li, C.; Wendel, D.; et al. Structures of riboswitch RNA reaction states by mix-and-inject XFEL serial crystallography. Nature 2017, 541, 242–246. [Google Scholar] [CrossRef]
- Calvey, G.D.; Katz, A.M.; Schaffer, C.B.; Pollack, L. Mixing injector enables time-resolved crystallography with high hit rate at X-ray free electron lasers. Struct. Dyn. 2016, 3, 054301. [Google Scholar] [CrossRef] [Green Version]
- Orville, A.M. Entering an era of dynamic structural biology…. BMC Biol. 2018, 16, 55. [Google Scholar] [CrossRef] [Green Version]
XFEL | Synchroton | |
---|---|---|
Completeness (%) | 100 (100) | 99.6 (98.3) |
Multiplicity | 213 (122) | 3.6 (1.9) |
CC1/2 | 0.88 (0.051) | 0.633 (0.655) |
CC* | 0.97 (0.31) | 0.991 (0.890) |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mills, G.; Bean, R.; Mancuso, A.P. First Experiments in Structural Biology at the European X-ray Free-Electron Laser. Appl. Sci. 2020, 10, 3642. https://doi.org/10.3390/app10103642
Mills G, Bean R, Mancuso AP. First Experiments in Structural Biology at the European X-ray Free-Electron Laser. Applied Sciences. 2020; 10(10):3642. https://doi.org/10.3390/app10103642
Chicago/Turabian StyleMills, Grant, Richard Bean, and Adrian P. Mancuso. 2020. "First Experiments in Structural Biology at the European X-ray Free-Electron Laser" Applied Sciences 10, no. 10: 3642. https://doi.org/10.3390/app10103642
APA StyleMills, G., Bean, R., & Mancuso, A. P. (2020). First Experiments in Structural Biology at the European X-ray Free-Electron Laser. Applied Sciences, 10(10), 3642. https://doi.org/10.3390/app10103642