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Abstract 

The following analysis develops a classical theory of how a signal 
evolves from the initial incoherent spontaneous emission in long unri .-
lators. lhe theory is based on the coupled Klimontovich-Maxwell equa­
tions. Formulas for the radiated power, spectral characteristics and 
electron correlations are derived. The saturation due to nonlinear 
effects is studied using a quasi-linear extension of the theory. The 
results agree reasonably well with the recent Livermore experiment in 
the microwave range. Performance of a possible high-gain free electron 
laser in a short-wavelength region is evaluated. 
1. Introouction 

As an electron beam passes through an undulator, the initial 
random field of spontaneous radiation becomes amplified in intensity 
and enhanced in coherence characteristics. This process can be called 
self-amplified spontaneous emission (SASE), and it arises because the 
interaction between the radiation field and the beam causes a bunching 
m the beam. Aim understanding of SASE is important in characterizing 
the performance of a high-gain free electron laser, operating in a 
single-pass mode to circumvent the need for mirrors, in the short-
wavelength regtoi [1]. 
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To analyze SASE, it is necessary to generalize the usual free 
electron laser (FEL) analysis in two respects. First, a continuum of 
the frequency range around the resonant frequency must be explored 
since the spectrum characteristics change as the system evolves. 
Second, the discreteness of the electron distribution must be taken 
into account, since otherwise spontaneous emission is not possible. 
This is accomplished in this paper by working with the Klimontovich 
distribution function [2], rather than Vlasov's. The coupled 
Klimontovich-Maxwell equations are solved by perturbation theory, in 
which deviations of the fine-grained distribution from the smooth 
average is regarded as being a first-order quantity. One finds that 
the radiation field is composed of two terms. The first term is pro­
portional tn the input coherent signal and describes the well-known 
FEL gain process. The second term is proportional to the sum of ran­
dom phase factors and represents the SASE process. 

The radiation intensity corresponding to the SASE term reduces to 
the well-known result for spontaneous emission in the limit of small 
interaction. In the regime of exponential growth, one obtains an 
explicit formula for the power and the spectral characteristics of the 
SASE radiation, as well as insights into the correlation properties of 
the electron beam distribution. The exponential growth saturates 
eventually due to nonlinear effects, which can be analyzed in a quasi-
linear approximation [3]. These results are then used to discuss the 
recent microwave FEL experiment at livermore [4] and to assess the 
performance of a high-gain, single-pass F'El Tin the short-wavelength 
region [5]. 
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II. The Klimontovich-Maxwell Equations 
2 The average energy of the electron beam will be denoted by mc Y 0 

(m = electron mass, c = velocity of light). The beam travels along 
the z-direction through an undulator of period length A with a peak 
magnetic field B . The resonant frequency u. and the corresponding 
wavelength A, are given by 

"1 - I * " k u c " ^ ' ( 1 ) 

1 *i u i + r/2 

where K = eB /rnck , e = electron charge and k = 2n/x • (MKS units 
are used throughout this paper.) For a one-dimensional case, the 
electric field can be represented by 

n>, /.00 ivin, (t - z/c) 
E(z,t) = - r r / dv A'(v,z) e L (2) 

/?* \ 
J —at, 

A 1 in Eq. (2) is a complex amplitude slowly varying in z and is peaked 
around |v|~l. Although the theory can be readily generalized to higher 
harmonic, the focus in this paper vill be the fundamental frequency. 

The distance z from the undulator entrance will be chosen as the 
independent variable. The dependent variables describing the motion 
of the i-th electron are 

•l « k * - « j (T|U) - z/c) , (3) 
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T),- = 
Yi ~yo 

1 Y„ (4) 

Here t.(z) is the time at which the electron passes through z, averaged 
over the wiggling motion. The equations of motion, usually known as 
the pendulum equations, are as follows: 

d9 

ar-Vi . (5) 

^ 1 . eKLMI ~A ( e. 
dz 2yQ mc^ 1 

Here 

K2 

0 l 4(1 + IC/2 

A(e) = — fiiv A(v) e " i v e 

\ i 

V(u) + tFJe.m,*} 

(6) 

(7) 

(3) 

-iAvk z 
A(») = A'(v) e u (9) 

flv = \> - 1 . (10) 

The Klimontovich distribution function is 

(11] 
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Here N is.the number of electrons within a longitudinal distance 
equal to X-, and V(n) is the smoothed initial distribution function 
(normalized so that J V dn = 1), the distribution in e being assumed 
uniform. sF in Eq. (11) contains the deviation from the smooth back­
ground, as well as the effects of the interaction, and will be treated 
as a small, first-order quantity. The continuity equation in e - n 
space becomes 

(h + 2^h)^ + f¥^2~^rn"M-° < 1 2 > 
x ' 2 Y C mc 

In equation (12), a term containing the product A(e)6F has been dropped 
as being a second-order term. Later, the term will be retained to 
study the saturation effects in a quasi-linear theory. 

The Maxwell equation is 

(fe- i A v k u ) A ( v ' z > = - 5 ^ ^ f«F(v,n) dn , (13) 

where j is the current densi ty, Z = 377 Ohms and 

(v,„) = -±- f e 1 1 
«F(v,n) = — l e , v e «F(G,T!) de . (14) 

III. The Solutions 
The coupled Kliaontovich-Maxwell equations, Eqs. (12) and (13), 

are identical in structure to the usual Vlasov-Maxwell equations and 
can be solved in linear theory with the Laplace-transform technique, 
©ma ©totaiimi 
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where d = K[JJ]Z j/8iy u,k • The contour integration in Eq. (15) 
effects the inverse Laplace transformation and should enclose the 
appropriate poles in the integrand. In addition to poles of kinematic 
origin, the poles obtained by solving the dispersion relation 

D ( x , v ) = x + | v + p 3 j d t i d ^ _ = 0 i (16) 

determine the dynamics of the system. Here n is a diinensionless param­
eter characterizing the interaction strength [6] and is given by 

/ e K [ J J ] Z o J V / 3 ,,,, 
V 3 2 Yo m c ku / 

Equation (16) is essentially the cubic equation known in the litera­
ture (.7], but generalized to include the effect of the beam energy 
spread and the detuning in frequency. 

Equation (15) gives the solution in terms of the initial condition 
A(v,0) and «F(V,TI,0). The term proportional to the former describes 
the amplification of the coherent input signal and reproduces the 
well-known theory of FEL interaction [8]. Since the main purpose of 
this paper is to study the SftSE process, the first term will not be 
considered further. The second term, the SASE term, contains a sum of 
stochastic phase factors which vanishes if averaged over microscopic­
ally equivalent ensembles. tawever, physical!ly meaningful quantities 
dire (padmatiit im f ieWs and cam be tfflmputed toy uisimig the ire'Datiiom [2| 
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<«F(e.n,0) 6F{e',n',0)> = p- s(e - e') a (n - n') V(n), (18) 

where the angular brackets denote the ensemble average. 
The spectral distribution of power is given by 

£ = f f <A(v,z) A*(v,z)> , (19) 

where o is the beam cross-sectional area and i is the bunch length. 
IV. Spontaneous Radiation 

By dropping the last term in the dispersion relation (Eq. (16)), 
Eq. (15) and the power spectrum given by Eq. (19) are easy to evaluate. 
To compare the result of evaluating Eq. (19) with a known formula one 
multiplies dP/du by & (0) to obtain the angular distribution. In the 

2 2 forward direction, the factor becomes « (0) = o/x,. One obtains 

dP 

d u d <}> 

lo_( KCjj] \2 21 f d n V ( n ) (^ y ^ - w z r ? fdr,V(n) 16,3Vl + K 2 / 2 ' T e ' , M " \ ™-^l2 
*=° (20) 

where I is the beam current aj. Equation (20) is well-known in the 
theory of undulator radiation [9]. 
V. SASL in the Exponential Gain Regime 

In general, the dispersion relation has a solution x = ov, with a 
positive imaginary part x. that gives rise to an exponentially grow­
ing intensity term proportional to expHk x.z). The spectral property 
is determined by the behavior of x. as A function of detuning a v. For 
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a given momentum distribution V(n), let x. be the maximum value of 
x, at Av = Av . Thus the growth is strongest at frequency u> = <D = 
10,(1 + Av ), ana the spectral shape is obtained by studying the behav­
ior of x. near Av = Av . One obtains 

I m 

— 2 (w - U L ) ._ mc v m 
dP ' 0 „ T - O - / , - , N -T— = P - * g e e 0 / \Z , (21) 
doi 2TT 3 2 ( u i 1 a ) ' 1 v 

where 

T = 4 k u X j m 2 , ( 2 2 ) 

g = /d n V(n)/lu + n/ P| 2
 ( ? 3 ) 

IdD/dxlJ _ p M 

In Eq. (21) a is the rms value of the relative bandwidth. For the 
ideal case, where V(n) = 6(n), one obtains [10] 

, . - $ - . , - . . * - an* . , - / - ^ — • ( » ) 
\j 2n/3(z/xu) 

The exponential growth of SASE saturates when pz/x„ becomes of 
u 

order unity, as will be seen later. The bandwidth of SASE in the 
\l? exponentially growing region is smaller by a factor (pz/x ) than 

that of the spontaneous radiation, which is about x It. However, the 
bandwidths of SASE and the spontaneous radiation are comparable at 
saturation. 

For a more general V W , the nHiisp&rsii*) relation must be soDvedl 
itwmteric.a'flil.s' to ©Dtaiim */", etc. Htue resell its ff©r <a rettamgjsll.sr 
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distribution are summarized in Fig. (1) and Fig. (2). One notices that 
the growth rate becomes negligible when the width of V(n) is much 
larger than p. 

The total power is obtained by integration, whereby one obtains 

T-Jd. d u = " P b e a m - ^ 9 e' " < 2 5> 

Here P. = i c y I/e is the power contained in the electron beam, beam 'o 
VI. Correlation 

By studying the solution for <5F(e,n>z), one obtains the correlation 
function in the exponential growth region 

C(e,e',z) = ff dndn' <6F(o,n,z) <sr(e',n',z)> 

2 ^ a T -c 2(e - e')2/2 
9 N

 v e e v cos(e - e 1) . (26) 

One sees that the correlation, modulated with the periodicity of the 
radiation wavelength, decreases as the distance between the electrons 
increases. 
VII. Saturation and Quasi-linear Theory 

The exponential growth cannot continue indefinitely, and the power 
must saturate at a certain level. The effect is due to nonlinear 
effects and can be studied by a quasi-linear extension of the linear 
theorj [3], For this purpose, one replaces V(m} Tin Eq. (11) by a 
2-#eil)emdeiiiit function V<[m,2) which is obtained from <F> by averaging 
©ver © as W t o w s : 
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V(n,z) = 2 j ; / d e <F (e,n,z)> . (27) 

The continuity equation for V(n,z) is 

+ _ e K _ a_ f 
2y2

nmci. 3ri J 
ll + r b o ^ / dv(Av6Fw* + c.c.)-0 . (28) 

In a quasi-linear theory, one solves the linear equations (12) and 
(13), treating V as z-independent, and obtains A and 6F as func­
tional of V. Inserting these into Eq. (28), one obtains a nonlinear 
Fokker-Planck equation which determines the behavior of V as a function 
of z. In this way it is found that the average value of n decreases 
so as to conserve the total energy of the radiation-electron beam sys­
tem. It is also found that the rms spread o of n increases as [11] 

«,2 ~'2 K r *T • ( 2 9 ) 

On the other hand, the growth rate becomes negligible when o » p. 
Thus, SASE saturates when the factor in the bracket in Eq. (29) 
becomes of order unity. In view of Eq. (25), the saturated power is 

Psat ~ «• Pbeam • < 3 0> 

This relation was derived before using an intuitive argument [6], 
VII. Comparison with the l.ivenrore Experiment 

k high-gain FEl experimeiRt in the microwave region has been carried 
oat at ILiveniwiire [4]. U$iim§ the parameters off the experiment (•*_ « ?, 
x * 9.® cm, x * S.ft? imm, I * iBSffl A, IK * ?.S#", AIR * fulll width of & 
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2 
rectangular momentum distribution = 6.4%, a = 3 x 10/2 cm ), one 

_o obtains p = 5.66 x 10 and the corresponding growth rate of 42.1 dB/m. 
The observed growth rate is 35 dB/m which is smaller than that pre­
dicted because of space charge effects. Taking the observed growth 
rate and computing the coefficient i- Eq. (25), one finds 

PT(Watts) = 2.8 x 1 0 - 5 x 10 3- 5 z ( l , l )/v^|iy . (31) 

Figure (3) compares this formula with the experimental result. For 
small z, the theoretical values are less than the experimental points, 
which could be due tc the presence of other modes, e.g., higher 
harmonics. For z > 2m the theoretical value is higher, which could be 
due to the saturation effects. 
VIII. A High-Gain FEL at 40C A 

A high-gain FEL operating in a special by-pass of an optimized 
storage ring is a promising way to achieve high-power radiation at 
short wavelengths fl]. A design of such a system for a 400 A FEL is 
described in Ref. [5], where p - 1.5 x 10 for an electron beam with 
I - 200 A and an rms .momentum spread of 23, which translates to a full 
width of 7% for a rectangular distribution. Such a system would gen­
erate about 100 MW of peak power, saturated at around 1000 umlulator 
periods. The relative band width of the spectrum would be around 10 . 
IX. Conclusion 

The theory presented here Is a consistent, classical treatment of 

the 'development of a Mftememt stigmai) ¥rm Uni&iiall miai'se [3,?]- The 

tteorj' vs afiffi-diiirnemsiioMail &®& <*p;piln,r.2'6ile t-o the sltunatijioin where the 
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radiation is guided, such as the Livermore experiment. In general, 
however, the three-dimensional aspects, such as diffraction and 
finite-beam-size effects, could play an important role [13,14], These 
and other extensions of the theory are currently under investigation. 
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Figure Captions 
Fig. 1. The solution of the dispersion relation for arbitrary 

harmonic number n (n = 1 in the rest of this paper). The 
curves show the values of x./pn as functions of 

1/3 2/3 
Aii)/(u,pn ) for various values of 6 = Sri n /p. The 
momentum distribution is assumed to be rectangular; V(n) = 
1/An for |nl £ An/2 and V(n) = 0 for |nl j> An/2. 

Fig. 2. The behavior of Max(uj) = X^/p and g (Eq. (23)) as 
functions of An/p. 

Fig. 3. A comparison of the experimental results (solid dots) and the 
theoretical prediction (dotted line) corresponding to the 
Livermore experiment (Ref. [4]). 
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