Theory of Quantum Path Entanglement and Interference with Multiplane Diffraction of Classical Light Sources
"> Figure 1
<p>(<b>a</b>) System model of the free propagating light with velocity <span class="html-italic">c</span> in the <span class="html-italic">z</span>-direction and MPD through <span class="html-italic">N</span> planes, where <span class="html-italic">j</span>th plane includes <math display="inline"><semantics> <msub> <mi>S</mi> <mi>j</mi> </msub> </semantics></math> slits at positions <math display="inline"><semantics> <msub> <mi>X</mi> <mrow> <mi>j</mi> <mo>,</mo> <mi>i</mi> </mrow> </msub> </semantics></math> for <math display="inline"><semantics> <mrow> <mi>i</mi> <mo>∈</mo> <mo>[</mo> <mn>1</mn> <mo>,</mo> <msub> <mi>S</mi> <mi>j</mi> </msub> <mo>]</mo> </mrow> </semantics></math> and interplane distance of <math display="inline"><semantics> <msub> <mi>L</mi> <mrow> <mi>j</mi> <mo>,</mo> <mi>j</mi> <mo>+</mo> <mn>1</mn> </mrow> </msub> </semantics></math>. (<b>b</b>) Example of three plane diffractions (<math display="inline"><semantics> <mrow> <mi>N</mi> <mo>=</mo> <mn>3</mn> </mrow> </semantics></math>) with two slits for the first and second planes showing all the possible seven types of histories composed of diffractions or projections <math display="inline"><semantics> <msub> <mi>P</mi> <mrow> <mn>1</mn> <mo>,</mo> <mn>1</mn> </mrow> </msub> </semantics></math>, <math display="inline"><semantics> <msub> <mi>P</mi> <mrow> <mn>1</mn> <mo>,</mo> <mn>2</mn> </mrow> </msub> </semantics></math>, <math display="inline"><semantics> <msub> <mi>P</mi> <mrow> <mn>2</mn> <mo>,</mo> <mn>1</mn> </mrow> </msub> </semantics></math>, and <math display="inline"><semantics> <msub> <mi>P</mi> <mrow> <mn>2</mn> <mo>,</mo> <mn>2</mn> </mrow> </msub> </semantics></math> through slits and measurements <math display="inline"><semantics> <msub> <mi>M</mi> <mn>1</mn> </msub> </semantics></math>, <math display="inline"><semantics> <msub> <mi>M</mi> <mn>2</mn> </msub> </semantics></math>, and <math display="inline"><semantics> <msub> <mi>M</mi> <mn>3</mn> </msub> </semantics></math> on the planes. There are <math display="inline"><semantics> <mrow> <msub> <mi>N</mi> <mi>p</mi> </msub> <mo>≡</mo> <msubsup> <mo>∏</mo> <mrow> <mi>j</mi> <mo>=</mo> <mn>1</mn> </mrow> <mrow> <mi>N</mi> <mo>−</mo> <mn>1</mn> </mrow> </msubsup> <msub> <mi>S</mi> <mi>j</mi> </msub> <mo>=</mo> <mn>2</mn> <mo>×</mo> <mn>2</mn> <mo>=</mo> <mn>4</mn> </mrow> </semantics></math> paths detected on the third plane.</p> "> Figure 2
<p>(<b>a</b>) The violation of Leggett–Garg Inequality (LGI) with the setup of two planes with triple slits where the event set at time <math display="inline"><semantics> <msub> <mi>t</mi> <mn>1</mn> </msub> </semantics></math> is <math display="inline"><semantics> <mfenced separators="" open="[" close="]"> <msub> <mi>P</mi> <mrow> <mn>1</mn> <mo>,</mo> <mn>1</mn> </mrow> </msub> </mfenced> </semantics></math>, <math display="inline"><semantics> <mfenced separators="" open="[" close="]"> <msub> <mi>P</mi> <mrow> <mn>1</mn> <mo>,</mo> <mn>2</mn> </mrow> </msub> </mfenced> </semantics></math>, and <math display="inline"><semantics> <mfenced separators="" open="[" close="]"> <msub> <mi>P</mi> <mrow> <mn>1</mn> <mo>,</mo> <mn>3</mn> </mrow> </msub> </mfenced> </semantics></math> and, at time <math display="inline"><semantics> <msub> <mi>t</mi> <mn>2</mn> </msub> </semantics></math>, are <math display="inline"><semantics> <mfenced separators="" open="[" close="]"> <msub> <mi>P</mi> <mrow> <mn>2</mn> <mo>,</mo> <mn>1</mn> </mrow> </msub> </mfenced> </semantics></math>, <math display="inline"><semantics> <mfenced separators="" open="[" close="]"> <msub> <mi>P</mi> <mrow> <mn>2</mn> <mo>,</mo> <mn>1</mn> </mrow> </msub> </mfenced> </semantics></math>, <math display="inline"><semantics> <mfenced separators="" open="[" close="]"> <msub> <mi>P</mi> <mrow> <mn>2</mn> <mo>,</mo> <mn>3</mn> </mrow> </msub> </mfenced> </semantics></math>, and <math display="inline"><semantics> <mfenced separators="" open="[" close="]"> <msub> <mi>M</mi> <mn>2</mn> </msub> </mfenced> </semantics></math> and ambiguous measurement setups by closing (<b>b</b>) the third, (<b>c</b>) the second, and (<b>d</b>) the first slits on the first plane.</p> "> Figure 3
<p>Setup for constructive and destructive interferences in time for the probabilities to diffract through each plane showing the history states (<b>a</b>) <math display="inline"><semantics> <mrow> <mrow> <mo>|</mo> </mrow> <msubsup> <mo>Ψ</mo> <mrow> <mn>3</mn> </mrow> <mi>a</mi> </msubsup> <mrow> <mo stretchy="false">)</mo> </mrow> <mo>≡</mo> <mfenced separators="" open="[" close="]"> <msub> <mi mathvariant="bold">P</mi> <mrow> <mn>3</mn> <mo>,</mo> <mn>1</mn> </mrow> </msub> </mfenced> <mo>⊙</mo> <mfenced separators="" open="[" close="]"> <msub> <mi mathvariant="bold">P</mi> <mrow> <mn>2</mn> <mo>,</mo> <mn>1</mn> </mrow> </msub> </mfenced> <mo>⊙</mo> <mfenced separators="" open="(" close=")"> <mfenced separators="" open="[" close="]"> <msub> <mi mathvariant="bold">P</mi> <mrow> <mn>1</mn> <mo>,</mo> <mn>1</mn> </mrow> </msub> </mfenced> <mo>+</mo> <mfenced separators="" open="[" close="]"> <msub> <mi mathvariant="bold">P</mi> <mrow> <mn>1</mn> <mo>,</mo> <mn>2</mn> </mrow> </msub> </mfenced> </mfenced> <mo>⊙</mo> <mfenced separators="" open="[" close="]"> <msub> <mi>ρ</mi> <mn>0</mn> </msub> </mfenced> </mrow> </semantics></math> as the superposition of <math display="inline"><semantics> <mrow> <mrow> <mo>|</mo> </mrow> <msubsup> <mo>Ψ</mo> <mrow> <mn>3</mn> </mrow> <mi>b</mi> </msubsup> <mrow> <mo stretchy="false">)</mo> </mrow> </mrow> </semantics></math> and <math display="inline"><semantics> <mrow> <mrow> <mo>|</mo> </mrow> <msubsup> <mo>Ψ</mo> <mrow> <mn>3</mn> </mrow> <mi>c</mi> </msubsup> <mrow> <mo stretchy="false">)</mo> </mrow> </mrow> </semantics></math>, (<b>b</b>) <math display="inline"><semantics> <mrow> <mrow> <mo>|</mo> </mrow> <msubsup> <mo>Ψ</mo> <mrow> <mn>3</mn> </mrow> <mi>b</mi> </msubsup> <mrow> <mo stretchy="false">)</mo> </mrow> <mo>≡</mo> <mfenced separators="" open="[" close="]"> <msub> <mi mathvariant="bold">P</mi> <mrow> <mn>3</mn> <mo>,</mo> <mn>1</mn> </mrow> </msub> </mfenced> <mo>⊙</mo> <mfenced separators="" open="[" close="]"> <msub> <mi mathvariant="bold">P</mi> <mrow> <mn>2</mn> <mo>,</mo> <mn>1</mn> </mrow> </msub> </mfenced> <mo>⊙</mo> <mfenced separators="" open="[" close="]"> <msub> <mi mathvariant="bold">P</mi> <mrow> <mn>1</mn> <mo>,</mo> <mn>1</mn> </mrow> </msub> </mfenced> <mo>⊙</mo> <mfenced separators="" open="[" close="]"> <msub> <mi>ρ</mi> <mn>0</mn> </msub> </mfenced> </mrow> </semantics></math>, and (<b>c</b>) <math display="inline"><semantics> <mrow> <mrow> <mo>|</mo> </mrow> <msubsup> <mo>Ψ</mo> <mrow> <mn>3</mn> </mrow> <mi>c</mi> </msubsup> <mrow> <mo stretchy="false">)</mo> </mrow> <mo>≡</mo> <mfenced separators="" open="[" close="]"> <msub> <mi mathvariant="bold">P</mi> <mrow> <mn>3</mn> <mo>,</mo> <mn>1</mn> </mrow> </msub> </mfenced> <mo>⊙</mo> <mfenced separators="" open="[" close="]"> <msub> <mi mathvariant="bold">P</mi> <mrow> <mn>2</mn> <mo>,</mo> <mn>1</mn> </mrow> </msub> </mfenced> <mo>⊙</mo> <mfenced separators="" open="[" close="]"> <msub> <mi mathvariant="bold">P</mi> <mrow> <mn>1</mn> <mo>,</mo> <mn>2</mn> </mrow> </msub> </mfenced> <mo>⊙</mo> <mfenced separators="" open="[" close="]"> <msub> <mi>ρ</mi> <mn>0</mn> </msub> </mfenced> </mrow> </semantics></math>. The targeted scenario with <span class="html-italic">classically counterintuitive</span> nature where a specific example of interference pattern (represented as the number of lambs denoting the number of photons for a practical counting experiment) for the cases of (<b>d</b>) two slits on PL-1 both open and (<b>e</b>) only the second slit open. The operation of closing the first slit decreases the number of photons diffracted through PL-2 while counterintuitively increases the number of photons through PL-3 since we classically expect a decrease. This scenario shows the interference of histories at two different time instants for PL-2 and PL-3 with firstly constructive and then destructive effects, respectively.</p> "> Figure 4
<p>The layouts used in (<b>a</b>) <math display="inline"><semantics> <mrow> <mi>S</mi> <mi>i</mi> <msub> <mi>m</mi> <mn>1</mn> </msub> </mrow> </semantics></math> and (<b>b</b>) <math display="inline"><semantics> <mrow> <mi>S</mi> <mi>i</mi> <msub> <mi>m</mi> <mn>2</mn> </msub> </mrow> </semantics></math>, where for <math display="inline"><semantics> <mrow> <mi>S</mi> <mi>i</mi> <msub> <mi>m</mi> <mn>2</mn> </msub> </mrow> </semantics></math>, the fixed values of the parameters are <math display="inline"><semantics> <mrow> <msub> <mi>σ</mi> <mn>0</mn> </msub> <mo>=</mo> <mn>200</mn> </mrow> </semantics></math> (<math display="inline"><semantics> <mi mathvariant="sans-serif">μ</mi> </semantics></math>m), <math display="inline"><semantics> <mrow> <msub> <mi>t</mi> <mn>01</mn> </msub> <mo>=</mo> <mn>0.5</mn> </mrow> </semantics></math> (ns), <math display="inline"><semantics> <mrow> <msub> <mi>t</mi> <mn>12</mn> </msub> <mo>=</mo> <mn>0.2</mn> </mrow> </semantics></math> (ns), <math display="inline"><semantics> <mrow> <msub> <mi>t</mi> <mn>23</mn> </msub> <mo>=</mo> <mn>0.1</mn> </mrow> </semantics></math> (ns), <math display="inline"><semantics> <mrow> <msub> <mi>β</mi> <mn>1</mn> </msub> <mo>=</mo> <mn>25</mn> </mrow> </semantics></math> (<math display="inline"><semantics> <mi mathvariant="sans-serif">μ</mi> </semantics></math>m), <math display="inline"><semantics> <mrow> <msub> <mi>β</mi> <mn>2</mn> </msub> <mo>=</mo> <mn>35</mn> </mrow> </semantics></math> (<math display="inline"><semantics> <mi mathvariant="sans-serif">μ</mi> </semantics></math>m), and <math display="inline"><semantics> <mrow> <msub> <mi>β</mi> <mn>3</mn> </msub> <mo>=</mo> <mn>45</mn> </mrow> </semantics></math> (<math display="inline"><semantics> <mi mathvariant="sans-serif">μ</mi> </semantics></math>m) in addition to the fixed values of the slit positions on the first plane. The practical measurement setups to be utilized in future experiments are illustrated for the probabilities (<b>c</b>) <math display="inline"><semantics> <mrow> <msub> <mi>p</mi> <mn>1</mn> </msub> <mrow> <mo stretchy="false">(</mo> <mrow> <mo stretchy="false">{</mo> <mn>1</mn> <mo>,</mo> <mn>2</mn> <mo stretchy="false">}</mo> </mrow> <mo stretchy="false">)</mo> </mrow> </mrow> </semantics></math> and (<b>d</b>) <math display="inline"><semantics> <mrow> <msub> <mi>p</mi> <mrow> <mn>1</mn> <mo>,</mo> <mn>2</mn> </mrow> </msub> <mrow> <mo stretchy="false">(</mo> <mrow> <mo stretchy="false">{</mo> <mn>1</mn> <mo>,</mo> <mn>3</mn> <mo stretchy="false">}</mo> </mrow> <mo>,</mo> <mn>2</mn> <mo stretchy="false">)</mo> </mrow> </mrow> </semantics></math>. The measurement planes count the detected number of photons compared with the number of photons emitted by the source in unit time.</p> "> Figure 5
<p>(<b>a</b>) LGI violation (<math display="inline"><semantics> <mrow> <msub> <mi>K</mi> <mi>A</mi> </msub> <mspace width="0.166667em"/> <mo>−</mo> <mspace width="0.166667em"/> <msub> <mi>K</mi> <mi>V</mi> </msub> </mrow> </semantics></math>) and signaling (<math display="inline"><semantics> <mrow> <msub> <mi>K</mi> <mi>V</mi> </msub> <mspace width="0.166667em"/> <mo>−</mo> <mn>1</mn> <mspace width="0.166667em"/> </mrow> </semantics></math>) for varying <math display="inline"><semantics> <msub> <mi>D</mi> <mi>s</mi> </msub> </semantics></math>, where <math display="inline"><semantics> <mrow> <msub> <mi>t</mi> <mn>01</mn> </msub> <mo>=</mo> <mn>0.2</mn> </mrow> </semantics></math> (ns), <math display="inline"><semantics> <mrow> <msub> <mi>t</mi> <mn>12</mn> </msub> <mo>=</mo> <mn>0.1</mn> </mrow> </semantics></math> (ns), <math display="inline"><semantics> <mrow> <mo>Δ</mo> <mi>x</mi> <mo>=</mo> <mn>7</mn> </mrow> </semantics></math>, <math display="inline"><semantics> <mrow> <msub> <mi>β</mi> <mn>1</mn> </msub> <mo>=</mo> <mn>15</mn> </mrow> </semantics></math> (<math display="inline"><semantics> <mi mathvariant="sans-serif">μ</mi> </semantics></math>m), <math display="inline"><semantics> <mrow> <msub> <mi>β</mi> <mn>2</mn> </msub> <mo>=</mo> <mn>30</mn> </mrow> </semantics></math> (<math display="inline"><semantics> <mi mathvariant="sans-serif">μ</mi> </semantics></math>m), and <math display="inline"><semantics> <mrow> <msub> <mi>σ</mi> <mn>0</mn> </msub> <mo>=</mo> <mn>130</mn> </mrow> </semantics></math> (<math display="inline"><semantics> <mi mathvariant="sans-serif">μ</mi> </semantics></math>m) and (<b>b</b>) the corresponding dichotomic sign assignments for ambiguous measurements maximizing the violation for each <math display="inline"><semantics> <msub> <mi>D</mi> <mi>s</mi> </msub> </semantics></math>.</p> "> Figure 6
<p>(<b>a</b>) Maximum LGI violation (<math display="inline"><semantics> <mrow> <msub> <mi>K</mi> <mi>A</mi> </msub> <mo>−</mo> <msub> <mi>K</mi> <mi>V</mi> </msub> </mrow> </semantics></math>) and the corresponding amount of signaling (<math display="inline"><semantics> <mrow> <msub> <mi>K</mi> <mi>V</mi> </msub> <mo>−</mo> <mn>1</mn> </mrow> </semantics></math>) for varying <math display="inline"><semantics> <msub> <mi>σ</mi> <mn>0</mn> </msub> </semantics></math>, <math display="inline"><semantics> <mrow> <mo>Δ</mo> <mi>x</mi> </mrow> </semantics></math>, and <math display="inline"><semantics> <mrow> <msub> <mi>t</mi> <mn>01</mn> </msub> <mo>=</mo> <msub> <mi>t</mi> <mn>12</mn> </msub> </mrow> </semantics></math> and (<b>b</b>) the corresponding values of <math display="inline"><semantics> <msub> <mi>β</mi> <mn>1</mn> </msub> </semantics></math>, <math display="inline"><semantics> <msub> <mi>β</mi> <mn>2</mn> </msub> </semantics></math>, and <math display="inline"><semantics> <msub> <mi>D</mi> <mi>s</mi> </msub> </semantics></math> maximizing the violation for each <math display="inline"><semantics> <msub> <mi>σ</mi> <mn>0</mn> </msub> </semantics></math> assuming fully coherent sources. Maximum violation for varying <math display="inline"><semantics> <mrow> <mo stretchy="false">(</mo> <msub> <mi>β</mi> <mn>1</mn> </msub> <mo>,</mo> <msub> <mi>β</mi> <mn>2</mn> </msub> <mo stretchy="false">)</mo> </mrow> </semantics></math> pairs for fully coherent sources where (<b>c</b>) <math display="inline"><semantics> <mrow> <mo>Δ</mo> <mi>x</mi> <mo>=</mo> <mn>7</mn> </mrow> </semantics></math> and <math display="inline"><semantics> <mrow> <msub> <mi>t</mi> <mn>01</mn> </msub> <mo>=</mo> <msub> <mi>t</mi> <mn>12</mn> </msub> <mo>=</mo> <mn>0.1</mn> </mrow> </semantics></math> (ns) at the maximizing <math display="inline"><semantics> <mrow> <msub> <mi>σ</mi> <mn>0</mn> </msub> <mo>=</mo> <mn>30</mn> </mrow> </semantics></math> (<math display="inline"><semantics> <mi mathvariant="sans-serif">μ</mi> </semantics></math>m), (<b>d</b>) <math display="inline"><semantics> <mrow> <mo>Δ</mo> <mi>x</mi> <mo>=</mo> <mn>7</mn> </mrow> </semantics></math> and <math display="inline"><semantics> <mrow> <msub> <mi>t</mi> <mn>01</mn> </msub> <mo>=</mo> <msub> <mi>t</mi> <mn>12</mn> </msub> <mo>=</mo> <mn>0.2</mn> </mrow> </semantics></math> (ns) at <math display="inline"><semantics> <mrow> <msub> <mi>σ</mi> <mn>0</mn> </msub> <mo>=</mo> <mn>230</mn> </mrow> </semantics></math> (<math display="inline"><semantics> <mi mathvariant="sans-serif">μ</mi> </semantics></math>m), and (<b>e</b>) <math display="inline"><semantics> <mrow> <mo>Δ</mo> <mi>x</mi> <mo>=</mo> <mn>11</mn> </mrow> </semantics></math> and <math display="inline"><semantics> <mrow> <msub> <mi>t</mi> <mn>01</mn> </msub> <mo>=</mo> <msub> <mi>t</mi> <mn>12</mn> </msub> <mo>=</mo> <mn>0.1</mn> </mrow> </semantics></math> (ns) at <math display="inline"><semantics> <mrow> <msub> <mi>σ</mi> <mn>0</mn> </msub> <mo>=</mo> <mn>150</mn> </mrow> </semantics></math> (<math display="inline"><semantics> <mi mathvariant="sans-serif">μ</mi> </semantics></math>m). It is observed that there is a large set of slit pairs and beam width resulting in LGI violation reaching <math display="inline"><semantics> <mrow> <mo>≈</mo> <mn>0.4</mn> </mrow> </semantics></math> for <math display="inline"><semantics> <mrow> <mo>Δ</mo> <mi>x</mi> <mo>=</mo> <mn>7</mn> </mrow> </semantics></math> and <math display="inline"><semantics> <mrow> <mo>≈</mo> <mn>0.23</mn> </mrow> </semantics></math> for <math display="inline"><semantics> <mrow> <mo>Δ</mo> <mi>x</mi> <mo>=</mo> <mn>11</mn> </mrow> </semantics></math>, respectively, while there are local peaks for <math display="inline"><semantics> <mrow> <mo stretchy="false">(</mo> <msub> <mi>β</mi> <mn>1</mn> </msub> <mo>,</mo> <msub> <mi>β</mi> <mn>2</mn> </msub> <mo stretchy="false">)</mo> </mrow> </semantics></math> pairs for all cases. Increasing <math display="inline"><semantics> <mrow> <msub> <mi>t</mi> <mn>01</mn> </msub> <mo>,</mo> <msub> <mi>t</mi> <mn>12</mn> </msub> </mrow> </semantics></math> values expands the <math display="inline"><semantics> <mrow> <mo stretchy="false">(</mo> <msub> <mi>β</mi> <mn>1</mn> </msub> <mo>,</mo> <msub> <mi>β</mi> <mn>2</mn> </msub> <mo stretchy="false">)</mo> </mrow> </semantics></math> pairs for similar values of violations. (<b>f</b>) The comparison of the spatial coherence diameters <math display="inline"><semantics> <msub> <mi>D</mi> <mi>c</mi> </msub> </semantics></math> with the diffraction setup diameters <math display="inline"><semantics> <msub> <mi>D</mi> <mn>1</mn> </msub> </semantics></math> and <math display="inline"><semantics> <msub> <mi>D</mi> <mn>2</mn> </msub> </semantics></math> for the first and second planes, respectively, where the targeted case is <math display="inline"><semantics> <mrow> <mo>Δ</mo> <mi>x</mi> <mo>=</mo> <mn>11</mn> </mrow> </semantics></math> and <math display="inline"><semantics> <mrow> <msub> <mi>t</mi> <mn>01</mn> </msub> <mo>=</mo> <msub> <mi>t</mi> <mn>12</mn> </msub> <mo>=</mo> <mn>0.1</mn> </mrow> </semantics></math> (ns), i.e., analyzed as the red curve in <a href="#entropy-22-00246-f006" class="html-fig">Figure 6</a>a, and (<b>g</b>) the corresponding LGI violation curve plotted again by emphasizing the coherence including the peak points.</p> "> Figure 7
<p>(<b>a</b>) <math display="inline"><semantics> <mrow> <mrow> <mo>|</mo> </mrow> <msub> <mi>ψ</mi> <mrow> <mn>2</mn> <mo>,</mo> <mn>0</mn> </mrow> </msub> <mrow> <mo stretchy="false">(</mo> <msub> <mi>x</mi> <mn>2</mn> </msub> <mo stretchy="false">)</mo> </mrow> <mspace width="0.166667em"/> <mo>+</mo> <mspace width="0.166667em"/> <msub> <mi>ψ</mi> <mrow> <mn>2</mn> <mo>,</mo> <mn>1</mn> </mrow> </msub> <mrow> <mo stretchy="false">(</mo> <msub> <mi>x</mi> <mn>2</mn> </msub> <mo stretchy="false">)</mo> </mrow> <msup> <mrow> <mo>|</mo> </mrow> <mn>2</mn> </msup> </mrow> </semantics></math> compared with <math display="inline"><semantics> <mrow> <mrow> <mo>|</mo> </mrow> <msub> <mi>ψ</mi> <mrow> <mn>2</mn> <mo>,</mo> <mn>1</mn> </mrow> </msub> <mrow> <mo stretchy="false">(</mo> <msub> <mi>x</mi> <mn>2</mn> </msub> <mo stretchy="false">)</mo> </mrow> <msup> <mrow> <mo>|</mo> </mrow> <mn>2</mn> </msup> </mrow> </semantics></math> and <math display="inline"><semantics> <mrow> <mrow> <mo>|</mo> </mrow> <msub> <mi>ψ</mi> <mrow> <mn>2</mn> <mo>,</mo> <mn>0</mn> </mrow> </msub> <mrow> <mo stretchy="false">(</mo> <msub> <mi>x</mi> <mn>2</mn> </msub> <mo stretchy="false">)</mo> </mrow> <msup> <mrow> <mo>|</mo> </mrow> <mn>2</mn> </msup> </mrow> </semantics></math> for diffraction through the layer PL-2, (<b>b</b>) <math display="inline"><semantics> <mrow> <munder> <mo movablelimits="false" form="prefix">max</mo> <msub> <mi>x</mi> <mn>3</mn> </msub> </munder> <mfenced separators="" open="{" close="}"> <mrow> <mo>|</mo> </mrow> <msub> <mi>ψ</mi> <mrow> <mn>3</mn> <mo>,</mo> <mn>0</mn> </mrow> </msub> <mrow> <mo stretchy="false">(</mo> <msub> <mi>x</mi> <mn>3</mn> </msub> <mo stretchy="false">)</mo> </mrow> <mspace width="0.166667em"/> <mo>+</mo> <mspace width="0.166667em"/> <msub> <mi>ψ</mi> <mrow> <mn>3</mn> <mo>,</mo> <mn>1</mn> </mrow> </msub> <mrow> <mo stretchy="false">(</mo> <msub> <mi>x</mi> <mn>3</mn> </msub> <mo stretchy="false">)</mo> </mrow> <msup> <mrow> <mo>|</mo> </mrow> <mn>2</mn> </msup> <mo>−</mo> <msup> <mrow> <mo>|</mo> <msub> <mi>ψ</mi> <mrow> <mn>3</mn> <mo>,</mo> <mn>1</mn> </mrow> </msub> <mrow> <mo stretchy="false">(</mo> <msub> <mi>x</mi> <mn>3</mn> </msub> <mo stretchy="false">)</mo> </mrow> <mo>|</mo> </mrow> <mn>2</mn> </msup> </mfenced> </mrow> </semantics></math> for varying <math display="inline"><semantics> <msub> <mi>X</mi> <mrow> <mn>2</mn> <mo>,</mo> <mn>1</mn> </mrow> </msub> </semantics></math> on PL-3 such that destructive interference is maximized for each <math display="inline"><semantics> <msub> <mi>X</mi> <mrow> <mn>2</mn> <mo>,</mo> <mn>1</mn> </mrow> </msub> </semantics></math> with respect to <math display="inline"><semantics> <msub> <mi>x</mi> <mn>3</mn> </msub> </semantics></math> while <math display="inline"><semantics> <mrow> <msub> <mi>X</mi> <mrow> <mn>2</mn> <mo>,</mo> <mn>1</mn> </mrow> </msub> <mo>≈</mo> <mn>140</mn> <mspace width="0.166667em"/> <mi mathvariant="sans-serif">μ</mi> </mrow> </semantics></math>m maximizes the destructive interference, (<b>c</b>) <math display="inline"><semantics> <msub> <mi>X</mi> <mrow> <mn>3</mn> <mo>,</mo> <mn>1</mn> </mrow> </msub> </semantics></math> maximizing the destructive interference for varying <math display="inline"><semantics> <msub> <mi>X</mi> <mrow> <mn>2</mn> <mo>,</mo> <mn>1</mn> </mrow> </msub> </semantics></math>, (<b>d</b>) the comparison of <math display="inline"><semantics> <mrow> <mrow> <mo>|</mo> </mrow> <msub> <mi>ψ</mi> <mrow> <mn>3</mn> <mo>,</mo> <mn>0</mn> </mrow> </msub> <mrow> <mo stretchy="false">(</mo> <msub> <mi>x</mi> <mn>3</mn> </msub> <mo stretchy="false">)</mo> </mrow> <mspace width="0.166667em"/> <mo>+</mo> <mspace width="0.166667em"/> <msub> <mi>ψ</mi> <mrow> <mn>3</mn> <mo>,</mo> <mn>1</mn> </mrow> </msub> <mrow> <mo stretchy="false">(</mo> <msub> <mi>x</mi> <mn>3</mn> </msub> <mo stretchy="false">)</mo> </mrow> <msup> <mrow> <mo>|</mo> </mrow> <mn>2</mn> </msup> </mrow> </semantics></math> and <math display="inline"><semantics> <mrow> <mrow> <mo>|</mo> </mrow> <msub> <mi>ψ</mi> <mrow> <mn>3</mn> <mo>,</mo> <mn>1</mn> </mrow> </msub> <mrow> <mo stretchy="false">(</mo> <msub> <mi>x</mi> <mn>3</mn> </msub> <mo stretchy="false">)</mo> </mrow> <msup> <mrow> <mo>|</mo> </mrow> <mn>2</mn> </msup> </mrow> </semantics></math> on PL-3 for specific <math display="inline"><semantics> <mrow> <msub> <mi>X</mi> <mrow> <mn>2</mn> <mo>,</mo> <mn>1</mn> </mrow> </msub> <mo>≈</mo> <mn>140</mn> <mspace width="0.166667em"/> <mi mathvariant="sans-serif">μ</mi> </mrow> </semantics></math>m showing the destructive interference maximized with <math display="inline"><semantics> <mrow> <msub> <mi>X</mi> <mrow> <mn>3</mn> <mo>,</mo> <mn>1</mn> </mrow> </msub> <mo>≈</mo> <mn>143</mn> <mspace width="0.166667em"/> <mi mathvariant="sans-serif">μ</mi> </mrow> </semantics></math>m, and (<b>e</b>) the marked regions satisfy the counterintuitive scenario in (<a href="#FD53-entropy-22-00246" class="html-disp-formula">53</a>)–(<a href="#FD55-entropy-22-00246" class="html-disp-formula">55</a>) for varying <math display="inline"><semantics> <msub> <mi>X</mi> <mrow> <mn>2</mn> <mo>,</mo> <mn>1</mn> </mrow> </msub> </semantics></math> with the corresponding <math display="inline"><semantics> <msub> <mi>X</mi> <mrow> <mn>3</mn> <mo>,</mo> <mn>1</mn> </mrow> </msub> </semantics></math> pair in <a href="#entropy-22-00246-f007" class="html-fig">Figure 7</a>c. Constructive and destructive interferences are observed for diffraction through PL-2 and PL-3, respectively, with different kinds of correlation of the paths at different times as a proof-of-concept numerical simulation of <span class="html-italic">quantum path interference (QPI) in time</span> between the two paths. (<b>f</b>) The comparison of setup diameters on the second and third planes, i.e., <math display="inline"><semantics> <msub> <mi>D</mi> <mn>2</mn> </msub> </semantics></math> and <math display="inline"><semantics> <msub> <mi>D</mi> <mn>3</mn> </msub> </semantics></math>, respectively, with the spatial coherence diameters <math display="inline"><semantics> <mrow> <msub> <mi>D</mi> <mi>c</mi> </msub> <mrow> <mo stretchy="false">(</mo> <msub> <mi>t</mi> <mn>12</mn> </msub> <mo>,</mo> <msub> <mi>β</mi> <mn>1</mn> </msub> <mo stretchy="false">)</mo> </mrow> </mrow> </semantics></math> and <math display="inline"><semantics> <mrow> <msub> <mi>D</mi> <mi>c</mi> </msub> <mrow> <mo stretchy="false">(</mo> <msub> <mi>t</mi> <mn>23</mn> </msub> <mo>,</mo> <msub> <mi>β</mi> <mn>2</mn> </msub> <mo stretchy="false">)</mo> </mrow> </mrow> </semantics></math>, respectively, in the targeted range of <math display="inline"><semantics> <mrow> <msub> <mi>X</mi> <mrow> <mn>2</mn> <mo>,</mo> <mn>1</mn> </mrow> </msub> <mo>∈</mo> <mrow> <mo>[</mo> <mn>140</mn> <mo>,</mo> <mn>170</mn> <mo>]</mo> </mrow> </mrow> </semantics></math> (<math display="inline"><semantics> <mi mathvariant="sans-serif">μ</mi> </semantics></math>m) in <a href="#entropy-22-00246-f007" class="html-fig">Figure 7</a>e.</p> "> Figure 8
<p>(<b>a</b>) The conventional modeling for the spatial coherence of light sources based on double-slit diffraction [<a href="#B43-entropy-22-00246" class="html-bibr">43</a>], where <math display="inline"><semantics> <mrow> <mo>Δ</mo> <mi>θ</mi> <mspace width="0.166667em"/> <mo>Δ</mo> <mi>s</mi> <mo>≤</mo> <mi>λ</mi> </mrow> </semantics></math> is required for the fringes to be observed determining the spatial coherence diameter (<math display="inline"><semantics> <msub> <mi>D</mi> <mi>c</mi> </msub> </semantics></math>); (<b>b</b>) free-space propagation of Gaussian beam, where <math display="inline"><semantics> <msub> <mi>D</mi> <mi>c</mi> </msub> </semantics></math> is approximated as the <math display="inline"><semantics> <mrow> <mn>1</mn> <mo>/</mo> <msup> <mi>e</mi> <mn>2</mn> </msup> </mrow> </semantics></math> intensity beamwidth of <math display="inline"><semantics> <mrow> <mn>2</mn> <mspace width="0.166667em"/> <msqrt> <mn>2</mn> </msqrt> <mspace width="0.166667em"/> <msub> <mi>σ</mi> <mn>0</mn> </msub> </mrow> </semantics></math> with the standard deviation of <math display="inline"><semantics> <msub> <mi>σ</mi> <mi>D</mi> </msub> </semantics></math>. The descriptions of the calculation of the setup diameters on the planes to include the slits are denoted by <math display="inline"><semantics> <msub> <mi>D</mi> <mi>j</mi> </msub> </semantics></math> for <math display="inline"><semantics> <mrow> <mi>j</mi> <mo>∈</mo> <mo>[</mo> <mn>1</mn> <mo>,</mo> <mn>3</mn> <mo>]</mo> </mrow> </semantics></math> with respect to the location and the standard deviation of the source on the previous plane (<math display="inline"><semantics> <msub> <mi>σ</mi> <mn>0</mn> </msub> </semantics></math> for the first plane and <math display="inline"><semantics> <msub> <mi>β</mi> <mrow> <mi>j</mi> <mo>−</mo> <mn>1</mn> </mrow> </msub> </semantics></math> for the <span class="html-italic">j</span>th plane) for (<b>c</b>) LGI violation numerical analysis <math display="inline"><semantics> <mrow> <mi>S</mi> <mi>i</mi> <msub> <mi>m</mi> <mn>1</mn> </msub> </mrow> </semantics></math> with two planes of triple slits on each plane and (<b>d</b>) interference in time scenario <math display="inline"><semantics> <mrow> <mi>S</mi> <mi>i</mi> <msub> <mi>m</mi> <mn>2</mn> </msub> </mrow> </semantics></math> with three planes.</p> ">
Abstract
:1. Introduction
- introduction and operator theory modeling of two novel quantum resources, i.e., QPE and QPI, denoting temporal correlations and the interference among quantum trajectories, respectively, in MPD while utilizing the tensor product structure for future quantum computing and communication architectures and foundational QM studies;
- theoretical modeling and numerical analysis of MPD setup for the violation of LGI, with the ambiguous and no-signaling forms recently proposed by Emary in Reference [16], reaching of correlation amplitude numerically obtained for three-time formulation while leaving the maximization of the violation to the boundary levels as an open issue;
- a novel setup, i.e., MPD, violating the ambiguous form of LGI with classical light sources complementing the recent experiment utilizing linear polarization degree of freedom of the classical light [19] while MPD setup with remarkably low complexity design utilizing classical light sources and photon-counting intensity detection;
- theoretical modeling and numerical analysis of counterintuitive properties and examples of the interference among MPD-based Feynman paths denoted as QPI promising to be easily verified experimentally in future studies;
- the modeling and numerical analysis of the coherence properties of the light sources in terms of spatial and temporal dimensions while discussing design issues for MPD setup with coherent light sources; and
- discussion for future applications of QPE and QPI as quantum resources and experimental implementations.
2. Results
2.1. MPD Setup for Quantum Temporal Correlations
2.2. Diffractive Projection and Measurement Operators
2.3. History State Modeling of QPE
Event Probabilities
2.4. Modeling of the Violation of LGI in MPD
2.5. Modeling of QPI
2.6. Numerical Results
2.6.1. Violation of LGI
2.6.2. QPI Analysis
3. Discussion and Conclusions
4. Methods
4.1. Parameters for FPI Modeling of the Violation of LGI
4.2. Temporal and Spatial Coherence of the Light Sources
Funding
Conflicts of Interest
Abbreviations
MPD | Multiplane diffraction |
QC | Quantum computing |
QM | Quantum mechanical |
QPE | Quantum path entanglement |
QPI | Quantum path interference |
FPI | Feynman’s path integral |
LGI | Leggett-Garg Inequality |
MR | Macroscopic realism |
NIM | Non-invasive measurability |
SIT | Signaling-in-time |
GHZ | Greenberger-Horne-Zeilinger |
FWHM | Full width half maximum |
References
- Cotler, J.; Wilczek, F. Entangled histories. Phys. Scr. 2016, 2016, 014004. [Google Scholar] [CrossRef] [Green Version]
- Feynman, R.P.; Hibbs, A.R.; Styer, D.F. Quantum Mechanics and Path Integrals; Dover: Mineola, NY, USA, 2010. [Google Scholar]
- Griffiths, R.B. Consistent histories and the interpretation of quantum mechanics. J. Stat. Phys. 1984, 36, 219–272. [Google Scholar] [CrossRef]
- Griffiths, R.B. Consistent interpretation of quantum mechanics using quantum trajectories. Phys. Rev. Lett. 1993, 70, 2201. [Google Scholar] [CrossRef] [PubMed]
- Griffiths, R.B. Consistent Quantum Theory; Cambridge University Press: Cambridge, UK, 2003. [Google Scholar]
- Aharonov, Y.; Vaidman, L. The two-state vector formalism: An updated review. In Time in Quantum Mechanics, 2nd ed.; Muga, G., Sala Mayato, R., Egusquiza, I., Eds.; Springer: Berlin/Heidelberg, Germany, 2008; Volume 1, pp. 399–447. [Google Scholar]
- Nowakowski, M.; Cohen, E.; Horodecki, P. Entangled histories vs. the two-state-vector formalism-towards a better understanding of quantum temporal correlations. arXiv 2018, arXiv:1803.11267. [Google Scholar]
- Gulbahar, B. Quantum path computing: Computing architecture with propagation paths in multiple plane diffraction of classical sources of fermion and boson particles. Quantum Inf. Process. 2019, 18, 167. [Google Scholar] [CrossRef] [Green Version]
- Gulbahar, B. Quantum path computing and communications with Fourier optics. arXiv 2019, arXiv:1908.02274. [Google Scholar]
- Gulbahar, B.; Memisoglu, G. Quantum spatial modulation of optical channels: Quantum boosting in spectral efficiency. IEEE Comm. Lett. 2019, 23, 2026–2030. [Google Scholar] [CrossRef]
- Cotler, J.; Duan, L.M.; Hou, P.Y.; Wilczek, F.; Xu, D.; Yin, Z.Q.; Zu, C. Experimental test of entangled histories. Ann. Phys. 2017, 387, 334–347. [Google Scholar] [CrossRef] [Green Version]
- Leggett, A.J.; Garg, A. Quantum mechanics versus macroscopic realism: Is the flux there when nobody looks? Phys. Rev. Lett. 1985, 54, 857. [Google Scholar] [CrossRef] [Green Version]
- Emary, C.; Lambert, N.; Nori, F. Leggett–Garg inequalities. Rep. Prog. Phys. 2013, 77, 016001. [Google Scholar] [CrossRef]
- Emary, C.; Lambert, N.; Nori, F. Leggett-Garg inequality in electron interferometers. Phys. Rev. B 2012, 86, 235447. [Google Scholar] [CrossRef] [Green Version]
- Wilde, M.M.; Mizel, A. Addressing the clumsiness loophole in a Leggett-Garg test of macrorealism. Found. Phys. 2012, 42, 256–265. [Google Scholar] [CrossRef] [Green Version]
- Emary, C. Ambiguous measurements, signaling, and violations of Leggett-Garg inequalities. Phys. Rev. A 2017, 96, 042102. [Google Scholar] [CrossRef] [Green Version]
- Katiyar, H.; Brodutch, A.; Lu, D.; Laflamme, R. Experimental violation of the Leggett–Garg inequality in a three-level system. New J. Phys. 2017, 19, 023033. [Google Scholar] [CrossRef] [Green Version]
- Morikoshi, F. Information-theoretic temporal Bell inequality and quantum computation. Phys. Rev. A 2006, 73, 052308. [Google Scholar] [CrossRef] [Green Version]
- Zhang, X.; Li, T.; Yang, Z.; Zhang, X. Experimental observation of the Leggett-Garg inequality violation in classical light. J. Opt. 2018, 21, 015605. [Google Scholar] [CrossRef]
- Wang, K.; Emary, C.; Zhan, X.; Bian, Z.; Li, J.; Xue, P. Enhanced violations of Leggett-Garg inequalities in an experimental three-level system. Opt. Express 2017, 25, 31462–31470. [Google Scholar] [CrossRef] [Green Version]
- Xu, J.-S.; Li, C.F.; Zou, X.B.; Guo, G.C. Experimental violation of the Leggett-Garg inequality under decoherence. Sci. Rep. 2011, 1, 101. [Google Scholar] [CrossRef] [Green Version]
- Asano, M.; Hashimoto, T.; Khrennikov, A.; Ohya, M.; Tanaka, Y. Violation of contextual generalization of the Leggett-Garg inequality for recognition of ambiguous figures. Phys. Scr. 2014, T163, 014006. [Google Scholar] [CrossRef]
- Losada, M.; Laura, R. Generalized contexts and consistent histories in quantum mechanics. Ann. Phys. 2014, 344, 263–274. [Google Scholar] [CrossRef]
- Howard, M.; Wallman, J.; Veitch, V.; Emerson, J. Contextuality supplies the ‘magic’ for quantum computation. Nature 2014, 510, 351–355. [Google Scholar] [CrossRef] [Green Version]
- Zavatta, A.; Viciani, S.; Bellini, M. Quantum-to-classical transition with single-photon-added coherent states of light. Science 2004, 306, 660–662. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Glauber, R.J. Quantum Theory of Optical Coherence: Selected Papers and Lectures; John Wiley & Sons: Weinhaim, Germany, 2007. [Google Scholar]
- Chen, Z.; Beierle, P.; Batelaan, H. Spatial correlation in matter-wave interference as a measure of decoherence, dephasing, and entropy. Phys. Rev. A 2018, 97, 043608. [Google Scholar] [CrossRef] [Green Version]
- DiVincenzo, D.; Terhal, B. Decoherence: The obstacle to quantum computation. Phys. World 1998, 11, 53. [Google Scholar] [CrossRef]
- da Paz, I.; Vieira, C.H.S.; Ducharme, R.; Cabral, L.A.; Alexander, H.; Sampaio, M.D.R. Gouy phase in nonclassical paths in a triple-slit interference experiment. Phys. Rev. A 2016, 93, 033621. [Google Scholar] [CrossRef] [Green Version]
- Santos, E.A.; Castro, F.; Torres, R. Huygens-Fresnel principle: Analyzing consistency at the photon level. Phys. Rev. A 2018, 97, 043853. [Google Scholar] [CrossRef] [Green Version]
- Sawant, R.; Samuel, J.; Sinha, A.; Sinha, S.; Sinha, U. Nonclassical paths in quantum interference experiments. Phys. Rev. Lett. 2014, 113, 120406. [Google Scholar] [CrossRef] [Green Version]
- Ozaktas, H.M.; Zalevsky, Z.; Kutay, M.A. The Fractional Fourier Transform with Applications in Optics and Signal Processing; John Wiley and Sons: Chichester, UK, 2001. [Google Scholar]
- Dowker, H.; Halliwell, J.J. Quantum mechanics of history: The decoherence functional in quantum mechanics. Phys. Rev. D 1992, 46, 1580. [Google Scholar] [CrossRef]
- Meng, Z.; Stewart, G.; Whitenett, G. Stable single-mode operation of a narrow-linewidth, linearly polarized, erbium-fiber ring laser using a saturable absorber. J. Lightw. Technol. 2006, 24, 2179. [Google Scholar] [CrossRef]
- Sinha, A.; Vijay, A.H.; Sinha, U. On the superposition principle in interference experiments. Sci. Rep. 2015, 5, 10304. [Google Scholar] [CrossRef] [Green Version]
- Magana-Loaiza, O.S.; De Leon, I.; Mirhosseini, M.; Fickler, R.; Safari, A.; Mick, U.; McIntyre, B.; Banzer, P.; Rodenburg, B.; Leuchs, G.; et al. Exotic looped trajectories of photons in three-slit interference. Nat. Commun. 2016, 7, 13987. [Google Scholar] [CrossRef] [Green Version]
- Gagnon, E.; Brown, C.D.; Lytle, A.L. Effects of detector size and position on a test of Born’s rule using a three-slit experiment. Phys. Rev. A 2014, 90, 013832. [Google Scholar] [CrossRef]
- Brukner, C.; Taylor, S.; Cheung, S.; Vedral, V. Quantum entanglement in time. arXiv 2004, arXiv:1701.08116. [Google Scholar]
- Aharonov, Y.; Popescu, S.; Tollaksen, J.; Vaidman, L. Multiple-time states and multiple-time measurements in quantum mechanics. Phys. Rev. A 2009, 79, 052110. [Google Scholar] [CrossRef] [Green Version]
- Gell-Mann, M.; Hartle, J.B. Alternative decohering histories in quantum mechanics. In Proceedings of the 25th International Conference on High Energy Physics, Singapore, 2–8 August 1990. [Google Scholar]
- Omnès, R. Interpretation of quantum mechanics. Phys. Lett. A 1987, 125, 169–172. [Google Scholar] [CrossRef]
- Isham, C.J. Quantum logic and the histories approach to quantum theory. J. Math. Phys. 1994, 35, 2157–2185. [Google Scholar] [CrossRef] [Green Version]
- Mandel, L.; Wolf, E. Coherence properties of optical fields. Rev. Mod. Phys. 1965, 37, 231. [Google Scholar] [CrossRef]
- Akcay, C.; Parrein, P.; Rolland, J.P. Estimation of longitudinal resolution in optical coherence imaging. Appl. Opt. 2002, 41, 5256–5262. [Google Scholar] [CrossRef] [PubMed]
- Latychevskaia, T. Spatial coherence of electron beams from field emitters and its effect on the resolution of imaged objects. Ultramicroscopy 2017, 175, 121–129. [Google Scholar] [CrossRef] [Green Version]
- Zernike, F. The concept of degree of coherence and its application to optical problems. Physica 1938, 5, 785–795. [Google Scholar] [CrossRef]
ID | Property | Value | ID | Property | Value |
---|---|---|---|---|---|
(m) | |||||
; | ; (m) | (m) | |||
(ns) | (ns) | , , | |||
, (m) | , | , , (m) | 25, 35, 45 | ||
(m) | (m) | 200 |
Formula | Formula | Formula | |||
---|---|---|---|---|---|
Formula | Formula | Formula | |||
---|---|---|---|---|---|
© 2020 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gulbahar, B. Theory of Quantum Path Entanglement and Interference with Multiplane Diffraction of Classical Light Sources. Entropy 2020, 22, 246. https://doi.org/10.3390/e22020246
Gulbahar B. Theory of Quantum Path Entanglement and Interference with Multiplane Diffraction of Classical Light Sources. Entropy. 2020; 22(2):246. https://doi.org/10.3390/e22020246
Chicago/Turabian StyleGulbahar, Burhan. 2020. "Theory of Quantum Path Entanglement and Interference with Multiplane Diffraction of Classical Light Sources" Entropy 22, no. 2: 246. https://doi.org/10.3390/e22020246
APA StyleGulbahar, B. (2020). Theory of Quantum Path Entanglement and Interference with Multiplane Diffraction of Classical Light Sources. Entropy, 22(2), 246. https://doi.org/10.3390/e22020246